Solveeit Logo

Question

Question: Let $f(x)=1+2\cos x+3\sin x$. If real numbers a, b, c are such that $a f(x)+b f(c-x)=1$ holds for an...

Let f(x)=1+2cosx+3sinxf(x)=1+2\cos x+3\sin x. If real numbers a, b, c are such that af(x)+bf(cx)=1a f(x)+b f(c-x)=1 holds for any xRx\in R

then bcosca=\frac{b\cos c}{a}=

A

1

B

-1

C

13\frac{1}{3}

D

12-\frac{1}{2}

Answer

513\frac{5}{13}

Explanation

Solution

We are given

f(x)=1+2cosx+3sinx,f(x)=1+2\cos x+3\sin x,

and

af(x)+bf(cx)=1for all xR.a\,f(x)+b\,f(c-x)=1\quad\text{for all }x\in\mathbb{R}.

Since the identity holds for all xx, the coefficients of cosx\cos x and sinx\sin x must vanish and the constant term must match.

  1. Write
f(cx)=1+2cos(cx)+3sin(cx).f(c-x)=1+2\cos(c-x)+3\sin(c-x).

Using the cosine and sine angle‐difference formulas:

cos(cx)=cosccosx+sincsinx,\cos(c-x)=\cos c\cos x+\sin c\sin x, sin(cx)=sinccosxcoscsinx,\sin(c-x)=\sin c\cos x-\cos c\sin x,

we obtain

f(cx)=1+(2cosc+3sinc)cosx+(2sinc3cosc)sinx.f(c-x)=1+ (2\cos c+3\sin c)\cos x + (2\sin c-3\cos c)\sin x.
  1. Now,
af(x)+bf(cx)=a[1+2cosx+3sinx]+b[1+(2cosc+3sinc)cosx+(2sinc3cosc)sinx].a\,f(x)+b\,f(c-x)= a\,[1+2\cos x+3\sin x] + b\,[1+(2\cos c+3\sin c)\cos x+(2\sin c-3\cos c)\sin x].

Collect coefficients:

  • Constant term: a+ba+b
  • Coefficient of cosx\cos x: 2a+b(2cosc+3sinc)2a+ b(2\cos c+3\sin c)
  • Coefficient of sinx\sin x: 3a+b(2sinc3cosc)3a+ b(2\sin c-3\cos c)

For the identity to be 11 (with no cosx\cos x or sinx\sin x terms) we must have:

a+b=1,2a+b(2cosc+3sinc)=0,3a+b(2sinc3cosc)=0.a+b=1,\quad 2a+b(2\cos c+3\sin c)=0,\quad 3a+b(2\sin c-3\cos c)=0.
  1. From the second equation:
2a=b(2cosc+3sinc)a=b2(2cosc+3sinc).2a = -b (2\cos c+3\sin c) \quad\Longrightarrow\quad a = -\frac{b}{2}(2\cos c+3\sin c).

Substitute this into the third equation:

3[b2(2cosc+3sinc)]+b(2sinc3cosc)=0.3\Bigl[-\frac{b}{2}(2\cos c+3\sin c)\Bigr] + b(2\sin c-3\cos c)=0.

Multiply by 2:

3b(2cosc+3sinc)+2b(2sinc3cosc)=0.-3b(2\cos c+3\sin c)+2b(2\sin c-3\cos c)=0.

Factor bb (noting b0b\ne0):

3(2cosc+3sinc)+2(2sinc3cosc)=0.-3(2\cos c+3\sin c)+2(2\sin c-3\cos c)=0.

Expanding:

6cosc9sinc+4sinc6cosc=012cosc5sinc=0.-6\cos c -9\sin c+4\sin c-6\cos c=0\quad\Longrightarrow\quad -12\cos c -5\sin c=0.

Thus,

12cosc+5sinc=0sinc=125cosc.12\cos c+5\sin c =0\quad\Longrightarrow\quad \sin c = -\frac{12}{5}\cos c.
  1. Now substitute sinc=125cosc\sin c = -\frac{12}{5}\cos c back into the equation for aa from step 3:
a=b2[2cosc+3(125cosc)]=b2[2cosc365cosc]=b2[265cosc]=135bcosc.a = -\frac{b}{2}\Bigl[2\cos c+3\Bigl(-\frac{12}{5}\cos c\Bigr)\Bigr] = -\frac{b}{2}\left[2\cos c-\frac{36}{5}\cos c\right] = -\frac{b}{2}\left[-\frac{26}{5}\cos c\right] = \frac{13}{5}\,b\,\cos c.
  1. We need the value of bcosca\dfrac{b\cos c}{a}:
bcosca=bcosc135bcosc=513.\frac{b\cos c}{a}=\frac{b\cos c}{\frac{13}{5}\,b\,\cos c}=\frac{5}{13}.

Thus the required ratio is 513\frac{5}{13}.