Question
Question: Let f(x + y) = f(x) f(y) & f(x) = 1 + xg(x)h(x), where \(\lim_{x \rightarrow 0}\)g(x) = 4 and \(\li...
Let f(x + y) = f(x) f(y) & f(x) = 1 + xg(x)h(x), where
limx→0g(x) = 4 and limx→0h(x) = 2. Then f ¢(x) =
A
9
B
8
C
2
D
None
Answer
None
Explanation
Solution
f ¢(x) = limh→0 hf(x+h)−f(x)
=limh→0 hf(x)f(h)−f(x)
= limh→0 hf(x)(1+hg(h)φ(h)−1)
= limh→0f(x). g(h) f(h)
f(x) . 4. 2 = 8 f(x)