Solveeit Logo

Question

Question: Let f(x + y) = f(x) f(y) & f(x) = 1 + xg(x)h(x), where \(\lim_{x \rightarrow 0}\)g(x) = 4 and \(\li...

Let f(x + y) = f(x) f(y) & f(x) = 1 + xg(x)h(x), where

limx0\lim_{x \rightarrow 0}g(x) = 4 and limx0\lim_{x \rightarrow 0}h(x) = 2. Then f ¢(x) =

A

9

B

8

C

2

D

None

Answer

None

Explanation

Solution

f ¢(x) = limh0\lim _ { h \rightarrow 0 } f(x+h)f(x)h\frac{f(x + h) - f(x)}{h}

=limh0\lim _ { h \rightarrow 0 } f(x)f(h)f(x)h\frac{f(x)f(h) - f(x)}{h}

= limh0\lim _ { h \rightarrow 0 } f(x)(1+hg(h)φ(h)1)h\frac{f(x)(1 + hg(h)\varphi(h) - 1)}{h}

= limh0\lim_{h \rightarrow 0}f(x). g(h) f(h)

f(x) . 4. 2 = 8 f(x)