Solveeit Logo

Question

Question: Let f(x + y) = f(x) + f(y) + 2xy – 1 " x, y Î R. If f(x) is differentiable and f '(0) = sin f, then ...

Let f(x + y) = f(x) + f(y) + 2xy – 1 " x, y Î R. If f(x) is differentiable and f '(0) = sin f, then –

A

f(x) > 0 " x Î R

B

f(x) < 0 " x Î R

C

f(x) = sin f" x Î R

D

None of these

Answer

f(x) > 0 " x Î R

Explanation

Solution

f(x + y) = f(x) + f(y) + 2xy – 1

Put x = y = 0 ̃ f(0) = 2f(0) – 1 ̃ f(0) = 1

f '(x) = Limh0\operatorname { Lim } _ { h \rightarrow 0 } f(x+h)f(x)h\frac{f(x + h) - f(x)}{h}

̃ Limh0\operatorname { Lim } _ { h \rightarrow 0 } f(x)+f(h)+2xh1f(x)h\frac{f(x) + f(h) + 2xh - 1 - f(x)}{h}

2x + Limh0\operatorname { Lim } _ { h \rightarrow 0 } f(h)1h\frac{f(h) - 1}{h} ̃ 2x + f '(0) = 2x + sinf

Integrating we gat f(x) = x2 + x sin f + c

f (0) = 1 ̃ 1 = c \ f (x) = x2 + x sin f + 1 > 0 " x Î R