Question
Question: Let f(x + y) = f(x) + f(y) + 2xy – 1 " x, y Î R. If f(x) is differentiable and f '(0) = sin f, then ...
Let f(x + y) = f(x) + f(y) + 2xy – 1 " x, y Î R. If f(x) is differentiable and f '(0) = sin f, then –
A
f(x) > 0 " x Î R
B
f(x) < 0 " x Î R
C
f(x) = sin f" x Î R
D
None of these
Answer
f(x) > 0 " x Î R
Explanation
Solution
f(x + y) = f(x) + f(y) + 2xy – 1
Put x = y = 0 ̃ f(0) = 2f(0) – 1 ̃ f(0) = 1
f '(x) = Limh→0 hf(x+h)−f(x)
̃ Limh→0 hf(x)+f(h)+2xh−1−f(x)
2x + Limh→0 hf(h)−1 ̃ 2x + f '(0) = 2x + sinf
Integrating we gat f(x) = x2 + x sin f + c
f (0) = 1 ̃ 1 = c \ f (x) = x2 + x sin f + 1 > 0 " x Î R