Solveeit Logo

Question

Question: Let f(x) = \(x,y \in R\), x ¹ \(f(1) = 7,\) , x Î\(\sum_{r = 1}^{n}{f(r)}\). If f(x) is continuous i...

Let f(x) = x,yRx,y \in R, x ¹ f(1)=7,f(1) = 7, , x Îr=1nf(r)\sum_{r = 1}^{n}{f(r)}. If f(x) is continuous in 7n2\frac{7n}{2}, then f7(n+1)2\frac{7(n + 1)}{2}is -

A

– 1

B

7n(n+1)7n(n + 1)

C

7n(n+1)2\frac{7n(n + 1)}{2}

D

1

Answer

7n(n+1)2\frac{7n(n + 1)}{2}

Explanation

Solution

f(π4)\left( \frac { \pi } { 4 } \right) = = from

Dh = = sec2π/44\frac { - \sec ^ { 2 } \pi / 4 } { 4 }

= sec2π/44\frac { - \sec ^ { 2 } \pi / 4 } { 4 } = 24- \frac { 2 } { 4 } = –12\frac { 1 } { 2 }