Solveeit Logo

Question

Question: Let $f(x) = x^4-2x^2 + 2$, $x \in (-\infty, \infty)$ and $g(x) =$ $$ \operatorname{Lim}_{n \rightarr...

Let f(x)=x42x2+2f(x) = x^4-2x^2 + 2, x(,)x \in (-\infty, \infty) and g(x)=g(x) =

Limn(f(x))n1(f(x))n+1, then the value of r=110g(r4) is\operatorname{Lim}_{n \rightarrow \infty} \frac{(f(x))^n-1}{(f(x))^n+1}, \text{ then the value of } \sum_{r=1}^{10} g(r-4) \text{ is}
A

2

B

4

C

6

D

8

Answer

8

Explanation

Solution

Let f(x)=x42x2+2f(x) = x^4-2x^2 + 2. We can rewrite f(x)f(x) by completing the square:
f(x)=(x2)22(x2)+1+1=(x21)2+1f(x) = (x^2)^2 - 2(x^2) + 1 + 1 = (x^2-1)^2 + 1.
Since (x21)20(x^2-1)^2 \ge 0 for all real xx, the minimum value of f(x)f(x) is 0+1=10+1=1, which occurs when x21=0x^2-1=0, i.e., x=±1x=\pm 1.
For all other values of xx, (x21)2>0(x^2-1)^2 > 0, so f(x)>1f(x) > 1.
Thus, f(x)1f(x) \ge 1 for all x(,)x \in (-\infty, \infty).

Now consider the function g(x)=Limn(f(x))n1(f(x))n+1g(x) = \operatorname{Lim}_{n \rightarrow \infty} \frac{(f(x))^n-1}{(f(x))^n+1}.
Let y=f(x)y = f(x). We need to evaluate Limnyn1yn+1\operatorname{Lim}_{n \rightarrow \infty} \frac{y^n-1}{y^n+1}.

Case 1: y>1y > 1. Divide the numerator and denominator by yny^n:
Limnyn1yn+1=Limn11/yn1+1/yn\operatorname{Lim}_{n \rightarrow \infty} \frac{y^n-1}{y^n+1} = \operatorname{Lim}_{n \rightarrow \infty} \frac{1-1/y^n}{1+1/y^n}. Since y>1y > 1, Limn1/yn=0\operatorname{Lim}_{n \rightarrow \infty} 1/y^n = 0.
So, the limit is 101+0=1\frac{1-0}{1+0} = 1.

Case 2: y=1y = 1.
Limn1n11n+1=111+1=02=0\operatorname{Lim}_{n \rightarrow \infty} \frac{1^n-1}{1^n+1} = \frac{1-1}{1+1} = \frac{0}{2} = 0.

Since f(x)1f(x) \ge 1 for all xx, these are the only cases we need to consider for y=f(x)y=f(x).
So, the function g(x)g(x) is defined as:
g(x)=1g(x) = 1 if f(x)>1f(x) > 1
g(x)=0g(x) = 0 if f(x)=1f(x) = 1

We know that f(x)=1f(x) = 1 when x=±1x=\pm 1, and f(x)>1f(x) > 1 when x±1x \ne \pm 1.
Therefore, the function g(x)g(x) can be written as:
g(x)={0if x=1 or x=11if x1 and x1g(x) = \begin{cases} 0 & \text{if } x = -1 \text{ or } x = 1 \\ 1 & \text{if } x \ne -1 \text{ and } x \ne 1 \end{cases}

We need to find the value of the sum r=110g(r4)\sum_{r=1}^{10} g(r-4).
The terms in the sum are g(r4)g(r-4) for r=1,2,,10r=1, 2, \dots, 10.
Let k=r4k = r-4. As rr goes from 1 to 10, kk goes from 14=31-4=-3 to 104=610-4=6.
The sum is k=36g(k)\sum_{k=-3}^{6} g(k).
The arguments of gg in the sum are the integers in the set {3,2,1,0,1,2,3,4,5,6}\{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6\}.

We need to evaluate g(k)g(k) for each kk in this set:
g(3)g(-3): 3±1-3 \ne \pm 1, so g(3)=1g(-3)=1.
g(2)g(-2): 2±1-2 \ne \pm 1, so g(2)=1g(-2)=1.
g(1)g(-1): 1=1-1 = -1, so g(1)=0g(-1)=0.
g(0)g(0): 0±10 \ne \pm 1, so g(0)=1g(0)=1.
g(1)g(1): 1=11 = 1, so g(1)=0g(1)=0.
g(2)g(2): 2±12 \ne \pm 1, so g(2)=1g(2)=1.
g(3)g(3): 3±13 \ne \pm 1, so g(3)=1g(3)=1.
g(4)g(4): 4±14 \ne \pm 1, so g(4)=1g(4)=1.
g(5)g(5): 5±15 \ne \pm 1, so g(5)=1g(5)=1.
g(6)g(6): 6±16 \ne \pm 1, so g(6)=1g(6)=1.

The sum is the sum of these values:
r=110g(r4)=g(3)+g(2)+g(1)+g(0)+g(1)+g(2)+g(3)+g(4)+g(5)+g(6)\sum_{r=1}^{10} g(r-4) = g(-3) + g(-2) + g(-1) + g(0) + g(1) + g(2) + g(3) + g(4) + g(5) + g(6)
=1+1+0+1+0+1+1+1+1+1= 1 + 1 + 0 + 1 + 0 + 1 + 1 + 1 + 1 + 1

There are 10 terms in total.
The terms where g(k)=0g(k)=0 are for k=1k=-1 and k=1k=1. There are 2 such terms.
The terms where g(k)=1g(k)=1 are for the remaining 102=810-2=8 values of kk.
The sum is (8×1)+(2×0)=8+0=8(8 \times 1) + (2 \times 0) = 8 + 0 = 8.