Solveeit Logo

Question

Question: Let $f(x) = \tan^{-1}\sqrt{\frac{1+\sin x}{1-\sin x}}$ for $x \in (\frac{\pi}{2}, \pi)$, then $\left...

Let f(x)=tan11+sinx1sinxf(x) = \tan^{-1}\sqrt{\frac{1+\sin x}{1-\sin x}} for x(π2,π)x \in (\frac{\pi}{2}, \pi), then 2f(2π3)\left|\frac{2}{f'(\frac{2\pi}{3})}\right| is equal to

Answer

4

Explanation

Solution

The function is given by f(x)=tan11+sinx1sinxf(x) = \tan^{-1}\sqrt{\frac{1+\sin x}{1-\sin x}} for x(π2,π)x \in (\frac{\pi}{2}, \pi).

First, we simplify the expression inside the square root. We use the identities 1+cosθ=2cos2(θ/2)1+\cos \theta = 2\cos^2(\theta/2) and 1cosθ=2sin2(θ/2)1-\cos \theta = 2\sin^2(\theta/2). We can write sinx=cos(π2x)\sin x = \cos(\frac{\pi}{2} - x). So, 1+sinx1sinx=1+cos(π2x)1cos(π2x)=2cos2(π/2x2)2sin2(π/2x2)=cos2(π4x2)sin2(π4x2)=cot2(π4x2)\frac{1+\sin x}{1-\sin x} = \frac{1+\cos(\frac{\pi}{2} - x)}{1-\cos(\frac{\pi}{2} - x)} = \frac{2\cos^2(\frac{\pi/2 - x}{2})}{2\sin^2(\frac{\pi/2 - x}{2})} = \frac{\cos^2(\frac{\pi}{4} - \frac{x}{2})}{\sin^2(\frac{\pi}{4} - \frac{x}{2})} = \cot^2(\frac{\pi}{4} - \frac{x}{2}).

Thus, 1+sinx1sinx=cot2(π4x2)=cot(π4x2)\sqrt{\frac{1+\sin x}{1-\sin x}} = \sqrt{\cot^2(\frac{\pi}{4} - \frac{x}{2})} = \left|\cot(\frac{\pi}{4} - \frac{x}{2})\right|.

Now we need to determine the sign of cot(π4x2)\cot(\frac{\pi}{4} - \frac{x}{2}) for x(π2,π)x \in (\frac{\pi}{2}, \pi). If x(π2,π)x \in (\frac{\pi}{2}, \pi), then x2(π4,π2)\frac{x}{2} \in (\frac{\pi}{4}, \frac{\pi}{2}). So, π4x2(π4π2,π4π4)=(π4,0)\frac{\pi}{4} - \frac{x}{2} \in (\frac{\pi}{4} - \frac{\pi}{2}, \frac{\pi}{4} - \frac{\pi}{4}) = (-\frac{\pi}{4}, 0). In the interval (π4,0)(-\frac{\pi}{4}, 0), the angle is in the fourth quadrant, where cosine is positive and sine is negative. Therefore, cot\cot is negative. So, cot(π4x2)=cot(π4x2)\left|\cot(\frac{\pi}{4} - \frac{x}{2})\right| = -\cot(\frac{\pi}{4} - \frac{x}{2}).

Now, the function becomes f(x)=tan1(cot(π4x2))f(x) = \tan^{-1}\left(-\cot(\frac{\pi}{4} - \frac{x}{2})\right). We use the identity cotθ=tan(π2+θ)-\cot \theta = \tan(\frac{\pi}{2} + \theta). Let θ=π4x2\theta = \frac{\pi}{4} - \frac{x}{2}. f(x)=tan1(tan(π2+(π4x2)))=tan1(tan(3π4x2))f(x) = \tan^{-1}\left(\tan(\frac{\pi}{2} + (\frac{\pi}{4} - \frac{x}{2}))\right) = \tan^{-1}\left(\tan(\frac{3\pi}{4} - \frac{x}{2})\right).

For tan1(tanα)=α\tan^{-1}(\tan \alpha) = \alpha, the angle α\alpha must be in the principal range of tan1\tan^{-1}, which is (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}). Let's check the range of 3π4x2\frac{3\pi}{4} - \frac{x}{2} for x(π2,π)x \in (\frac{\pi}{2}, \pi). Since x(π2,π)x \in (\frac{\pi}{2}, \pi), we have x2(π4,π2)\frac{x}{2} \in (\frac{\pi}{4}, \frac{\pi}{2}). Multiplying by -1 and reversing the inequality signs, we get x2(π2,π4)-\frac{x}{2} \in (-\frac{\pi}{2}, -\frac{\pi}{4}). Adding 3π4\frac{3\pi}{4} to the interval, we get 3π4x2(3π4π2,3π4π4)=(π4,π2)\frac{3\pi}{4} - \frac{x}{2} \in (\frac{3\pi}{4} - \frac{\pi}{2}, \frac{3\pi}{4} - \frac{\pi}{4}) = (\frac{\pi}{4}, \frac{\pi}{2}). The interval (π4,π2)(\frac{\pi}{4}, \frac{\pi}{2}) is within the principal range (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}). Therefore, f(x)=3π4x2f(x) = \frac{3\pi}{4} - \frac{x}{2}.

Now we find the derivative f(x)f'(x): f(x)=ddx(3π4x2)=012=12f'(x) = \frac{d}{dx}(\frac{3\pi}{4} - \frac{x}{2}) = 0 - \frac{1}{2} = -\frac{1}{2}.

The derivative is a constant, so f(2π3)=12f'(\frac{2\pi}{3}) = -\frac{1}{2}.

We need to calculate 2f(2π3)\left|\frac{2}{f'(\frac{2\pi}{3})}\right|. 212=2×(2)=4=4\left|\frac{2}{-\frac{1}{2}}\right| = \left|2 \times (-2)\right| = \left|-4\right| = 4.

The final answer is 2f(2π3)=4\left|\frac{2}{f'(\frac{2\pi}{3})}\right| = 4.