Question
Question: Let $f(x) = \tan^{-1}\sqrt{\frac{1+\sin x}{1-\sin x}}$ for $x \in (\frac{\pi}{2}, \pi)$, then $\left...
Let f(x)=tan−11−sinx1+sinx for x∈(2π,π), then f′(32π)2 is equal to

4
Solution
The function is given by f(x)=tan−11−sinx1+sinx for x∈(2π,π).
First, we simplify the expression inside the square root. We use the identities 1+cosθ=2cos2(θ/2) and 1−cosθ=2sin2(θ/2). We can write sinx=cos(2π−x). So, 1−sinx1+sinx=1−cos(2π−x)1+cos(2π−x)=2sin2(2π/2−x)2cos2(2π/2−x)=sin2(4π−2x)cos2(4π−2x)=cot2(4π−2x).
Thus, 1−sinx1+sinx=cot2(4π−2x)=cot(4π−2x).
Now we need to determine the sign of cot(4π−2x) for x∈(2π,π). If x∈(2π,π), then 2x∈(4π,2π). So, 4π−2x∈(4π−2π,4π−4π)=(−4π,0). In the interval (−4π,0), the angle is in the fourth quadrant, where cosine is positive and sine is negative. Therefore, cot is negative. So, cot(4π−2x)=−cot(4π−2x).
Now, the function becomes f(x)=tan−1(−cot(4π−2x)). We use the identity −cotθ=tan(2π+θ). Let θ=4π−2x. f(x)=tan−1(tan(2π+(4π−2x)))=tan−1(tan(43π−2x)).
For tan−1(tanα)=α, the angle α must be in the principal range of tan−1, which is (−2π,2π). Let's check the range of 43π−2x for x∈(2π,π). Since x∈(2π,π), we have 2x∈(4π,2π). Multiplying by -1 and reversing the inequality signs, we get −2x∈(−2π,−4π). Adding 43π to the interval, we get 43π−2x∈(43π−2π,43π−4π)=(4π,2π). The interval (4π,2π) is within the principal range (−2π,2π). Therefore, f(x)=43π−2x.
Now we find the derivative f′(x): f′(x)=dxd(43π−2x)=0−21=−21.
The derivative is a constant, so f′(32π)=−21.
We need to calculate f′(32π)2. −212=∣2×(−2)∣=∣−4∣=4.
The final answer is f′(32π)2=4.