Solveeit Logo

Question

Question: Let \(f(x) = \sqrt{x^{4} + 15,}\) then the graph of the function \(y = f(x)\) is symmetrical about...

Let f(x)=x4+15,f(x) = \sqrt{x^{4} + 15,} then the graph of the function y=f(x)y = f(x) is symmetrical about

A

The x-axis

B

The y-axis

C

The origin

D

The line x=yx = y

Answer

The y-axis

Explanation

Solution

f(x)=x4+15f(x) = \sqrt{x^{4} + 15} \Rightarrow f(x)=(x)4+15f( - x) = \sqrt{( - x)^{4} + 15} =x4+15=f(x)= \sqrt{x^{4} + 15} = f(x)

f(x)=f(x)f(x)\Rightarrow f( - x) = f(x) \Rightarrow f(x) is an even function

f(x)\Rightarrow f(x) is symmetric about y-axis.