Solveeit Logo

Question

Question: Let $f(x) = \sin^4 x + \cos^4 x$. Then $f$ is an increasing function in the interval...

Let f(x)=sin4x+cos4xf(x) = \sin^4 x + \cos^4 x. Then ff is an increasing function in the interval

A

0,π40, \frac{\pi}{4}

B

π4,π2\frac{\pi}{4}, \frac{\pi}{2}

C

π2,5π8\frac{\pi}{2}, \frac{5\pi}{8}

D

5π8,3π4\frac{5\pi}{8}, \frac{3\pi}{4}

Answer

B

Explanation

Solution

To determine where the function f(x)=sin4x+cos4xf(x) = \sin^4 x + \cos^4 x is increasing, we need to find its first derivative, f(x)f'(x), and identify the intervals where f(x)>0f'(x) > 0.

Step 1: Simplify the function f(x)f(x)

We use the identity a2+b2=(a+b)22aba^2 + b^2 = (a+b)^2 - 2ab. Let a=sin2xa = \sin^2 x and b=cos2xb = \cos^2 x. f(x)=(sin2x)2+(cos2x)2f(x) = (\sin^2 x)^2 + (\cos^2 x)^2 f(x)=(sin2x+cos2x)22sin2xcos2xf(x) = (\sin^2 x + \cos^2 x)^2 - 2 \sin^2 x \cos^2 x Since sin2x+cos2x=1\sin^2 x + \cos^2 x = 1: f(x)=122sin2xcos2xf(x) = 1^2 - 2 \sin^2 x \cos^2 x f(x)=12sin2xcos2xf(x) = 1 - 2 \sin^2 x \cos^2 x We know that sin(2x)=2sinxcosx\sin(2x) = 2 \sin x \cos x, so sin2(2x)=4sin2xcos2x\sin^2(2x) = 4 \sin^2 x \cos^2 x. Therefore, 2sin2xcos2x=12(4sin2xcos2x)=12sin2(2x)2 \sin^2 x \cos^2 x = \frac{1}{2} (4 \sin^2 x \cos^2 x) = \frac{1}{2} \sin^2(2x). Substitute this back into f(x)f(x): f(x)=112sin2(2x)f(x) = 1 - \frac{1}{2} \sin^2(2x)

Step 2: Find the derivative f(x)f'(x)

Differentiate f(x)f(x) with respect to xx: f(x)=ddx(112sin2(2x))f'(x) = \frac{d}{dx} \left( 1 - \frac{1}{2} \sin^2(2x) \right) Using the chain rule, ddu(un)=nun1dudx\frac{d}{du}(u^n) = nu^{n-1} \frac{du}{dx} and ddx(sin(ax))=acos(ax)\frac{d}{dx}(\sin(ax)) = a\cos(ax): f(x)=0122sin(2x)cos(2x)ddx(2x)f'(x) = 0 - \frac{1}{2} \cdot 2 \sin(2x) \cdot \cos(2x) \cdot \frac{d}{dx}(2x) f(x)=sin(2x)cos(2x)2f'(x) = - \sin(2x) \cos(2x) \cdot 2 f(x)=2sin(2x)cos(2x)f'(x) = - 2 \sin(2x) \cos(2x) Using the double angle identity sin(2A)=2sinAcosA\sin(2A) = 2 \sin A \cos A: f(x)=sin(22x)f'(x) = - \sin(2 \cdot 2x) f(x)=sin(4x)f'(x) = - \sin(4x)

Step 3: Determine the condition for f(x)f(x) to be an increasing function

A function is increasing when its derivative is positive, i.e., f(x)>0f'(x) > 0. So, we need: sin(4x)>0- \sin(4x) > 0 sin(4x)<0\sin(4x) < 0

Step 4: Find the intervals where sin(θ)<0\sin(\theta) < 0

The sine function is negative in the third and fourth quadrants. In general, for an angle θ\theta, sin(θ)<0\sin(\theta) < 0 when: 2nπ+π<θ<2nπ+2π2n\pi + \pi < \theta < 2n\pi + 2\pi, where nn is an integer. Let θ=4x\theta = 4x. So, 2nπ+π<4x<2nπ+2π2n\pi + \pi < 4x < 2n\pi + 2\pi. Divide the inequality by 4: 2nπ+π4<x<2nπ+2π4\frac{2n\pi + \pi}{4} < x < \frac{2n\pi + 2\pi}{4} (2n+1)π4<x<(n+1)π2\frac{(2n+1)\pi}{4} < x < \frac{(n+1)\pi}{2}

Step 5: Check the given options

Let's find the intervals for different integer values of nn. For n=0n=0: (2(0)+1)π4<x<(0+1)π2\frac{(2(0)+1)\pi}{4} < x < \frac{(0+1)\pi}{2} π4<x<π2\frac{\pi}{4} < x < \frac{\pi}{2}

This interval matches option B. Let's verify other options as well:

  • A ]0,π40, \frac{\pi}{4}[: For x(0,π4)x \in (0, \frac{\pi}{4}), 4x(0,π)4x \in (0, \pi). In this interval, sin(4x)>0\sin(4x) > 0. So f(x)=sin(4x)<0f'(x) = -\sin(4x) < 0. Thus, f(x)f(x) is decreasing.
  • B ]π4,π2\frac{\pi}{4}, \frac{\pi}{2}[: For x(π4,π2)x \in (\frac{\pi}{4}, \frac{\pi}{2}), 4x(π,2π)4x \in (\pi, 2\pi). In this interval, sin(4x)<0\sin(4x) < 0. So f(x)=sin(4x)>0f'(x) = -\sin(4x) > 0. Thus, f(x)f(x) is increasing.
  • C ]π2,5π8\frac{\pi}{2}, \frac{5\pi}{8}[: For x(π2,5π8)x \in (\frac{\pi}{2}, \frac{5\pi}{8}), 4x(2π,5π2)4x \in (2\pi, \frac{5\pi}{2}). This is equivalent to 4x(0,π2)4x \in (0, \frac{\pi}{2}) in terms of sine's sign (after one full rotation). In this interval, sin(4x)>0\sin(4x) > 0. So f(x)=sin(4x)<0f'(x) = -\sin(4x) < 0. Thus, f(x)f(x) is decreasing.
  • D ]5π8,3π4\frac{5\pi}{8}, \frac{3\pi}{4}[: For x(5π8,3π4)x \in (\frac{5\pi}{8}, \frac{3\pi}{4}), 4x(5π2,3π)4x \in (\frac{5\pi}{2}, 3\pi). This is equivalent to 4x(π2,π)4x \in (\frac{\pi}{2}, \pi) in terms of sine's sign (after one full rotation). In this interval, sin(4x)>0\sin(4x) > 0. So f(x)=sin(4x)<0f'(x) = -\sin(4x) < 0. Thus, f(x)f(x) is decreasing.

Only option B corresponds to an interval where f(x)f(x) is increasing.