Question
Question: Let $f(x) = \sin^4 x + \cos^4 x$. Then $f$ is an increasing function in the interval...
Let f(x)=sin4x+cos4x. Then f is an increasing function in the interval

0,4π
4π,2π
2π,85π
85π,43π
B
Solution
To determine where the function f(x)=sin4x+cos4x is increasing, we need to find its first derivative, f′(x), and identify the intervals where f′(x)>0.
Step 1: Simplify the function f(x)
We use the identity a2+b2=(a+b)2−2ab. Let a=sin2x and b=cos2x. f(x)=(sin2x)2+(cos2x)2 f(x)=(sin2x+cos2x)2−2sin2xcos2x Since sin2x+cos2x=1: f(x)=12−2sin2xcos2x f(x)=1−2sin2xcos2x We know that sin(2x)=2sinxcosx, so sin2(2x)=4sin2xcos2x. Therefore, 2sin2xcos2x=21(4sin2xcos2x)=21sin2(2x). Substitute this back into f(x): f(x)=1−21sin2(2x)
Step 2: Find the derivative f′(x)
Differentiate f(x) with respect to x: f′(x)=dxd(1−21sin2(2x)) Using the chain rule, dud(un)=nun−1dxdu and dxd(sin(ax))=acos(ax): f′(x)=0−21⋅2sin(2x)⋅cos(2x)⋅dxd(2x) f′(x)=−sin(2x)cos(2x)⋅2 f′(x)=−2sin(2x)cos(2x) Using the double angle identity sin(2A)=2sinAcosA: f′(x)=−sin(2⋅2x) f′(x)=−sin(4x)
Step 3: Determine the condition for f(x) to be an increasing function
A function is increasing when its derivative is positive, i.e., f′(x)>0. So, we need: −sin(4x)>0 sin(4x)<0
Step 4: Find the intervals where sin(θ)<0
The sine function is negative in the third and fourth quadrants. In general, for an angle θ, sin(θ)<0 when: 2nπ+π<θ<2nπ+2π, where n is an integer. Let θ=4x. So, 2nπ+π<4x<2nπ+2π. Divide the inequality by 4: 42nπ+π<x<42nπ+2π 4(2n+1)π<x<2(n+1)π
Step 5: Check the given options
Let's find the intervals for different integer values of n. For n=0: 4(2(0)+1)π<x<2(0+1)π 4π<x<2π
This interval matches option B. Let's verify other options as well:
- A ]0,4π[: For x∈(0,4π), 4x∈(0,π). In this interval, sin(4x)>0. So f′(x)=−sin(4x)<0. Thus, f(x) is decreasing.
- B ]4π,2π[: For x∈(4π,2π), 4x∈(π,2π). In this interval, sin(4x)<0. So f′(x)=−sin(4x)>0. Thus, f(x) is increasing.
- C ]2π,85π[: For x∈(2π,85π), 4x∈(2π,25π). This is equivalent to 4x∈(0,2π) in terms of sine's sign (after one full rotation). In this interval, sin(4x)>0. So f′(x)=−sin(4x)<0. Thus, f(x) is decreasing.
- D ]85π,43π[: For x∈(85π,43π), 4x∈(25π,3π). This is equivalent to 4x∈(2π,π) in terms of sine's sign (after one full rotation). In this interval, sin(4x)>0. So f′(x)=−sin(4x)<0. Thus, f(x) is decreasing.
Only option B corresponds to an interval where f(x) is increasing.