Solveeit Logo

Question

Question: Let f(x) = sin sin 6 2             sin x for all x   and g(x) = 2  sin x for all x...

Let f(x) = sin sin 6 2             sin x for all x   and g(x) = 2  sin x for all x  . Let (f o g)(x) denote f(g(x)) and (g o f)(x) denote g(f(x)). Then which of the following is (are) true ?

A

Range of f is 1 1 , 2 2      

B

Range of f o g is 1 1 , 2 2      

C

  0   lim  6   x f x g x

D

There is an x   such that (g o f)(x) = 1

Answer

Options (A), (B), and (D) are true.

Explanation

Solution

Solution:

We are given:

f(x)=sin(π6sin(π2sinx))for all xR,f(x)=\sin\Biggl(\frac{\pi}{6}\sin\Bigl(\frac{\pi}{2}\sin x\Bigr)\Biggr) \quad \text{for all } x\in \mathbb{R}, g(x)=2πsinxfor all xR.g(x)=2\pi\sin x \quad \text{for all } x\in \mathbb{R}.

(A) Range of ff:

For any xx, sinx[1,1]\sin x\in [-1,1]. Thus:

  • π2sinx[π2,π2]\frac{\pi}{2}\sin x\in \left[-\frac{\pi}{2},\frac{\pi}{2}\right],

  • Then sin(π2sinx)[1,1]\sin\Bigl(\frac{\pi}{2}\sin x\Bigr)\in [-1,1],

  • So π6sin(π2sinx)[π6,π6]\frac{\pi}{6}\sin\Bigl(\frac{\pi}{2}\sin x\Bigr)\in \left[-\frac{\pi}{6},\frac{\pi}{6}\right],

  • Finally, taking sine we get

f(x)=sin(y)with y[π6,π6].f(x)=\sin\Bigl(y\Bigr) \quad \text{with } y\in\left[-\frac{\pi}{6},\frac{\pi}{6}\right].

The sine function in this restricted interval is increasing. Hence, the range of ff is:

[sin(π6),sin(π6)]=[12,12].\Bigl[\sin\Bigl(-\frac{\pi}{6}\Bigr), \sin\Bigl(\frac{\pi}{6}\Bigr)\Bigr]=\left[-\frac{1}{2},\frac{1}{2}\right].

So, (A) is true.

(B) Range of fgf\circ g:

We have

(fg)(x)=f(g(x))=sin(π6sin(π2sin(2πsinx))).(f\circ g)(x)= f(g(x)) = \sin\Biggl(\frac{\pi}{6}\sin\Bigl(\frac{\pi}{2}\sin(2\pi\sin x)\Bigr)\Biggr).

Notice that regardless of the actual form of the argument, the definition of ff guarantees that its output always lies in the interval [12,12]\left[-\frac{1}{2},\frac{1}{2}\right] (because the inner sine always produces a number in [1,1][-1,1]). Thus, the range of fgf\circ g is also

[12,12].\left[-\frac{1}{2},\frac{1}{2}\right].

So, (B) is true.

(C) Evaluate limx0f(x)g(x)\displaystyle \lim_{x\to0}\frac{f(x)}{g(x)}:

For small xx, use the linear approximations:

  • sinxx\sin x\approx x,

  • Thus, sin(π2sinx)sin(π2x)π2x\sin\left(\frac{\pi}{2}\sin x\right)\approx \sin\left(\frac{\pi}{2} x\right)\approx \frac{\pi}{2}x.

  • Then, π6sin(π2sinx)π6π2x=π212x\frac{\pi}{6}\sin\left(\frac{\pi}{2}\sin x\right)\approx \frac{\pi}{6}\cdot\frac{\pi}{2}x = \frac{\pi^2}{12}x,

  • So, f(x)=sin(π212x)π212x.f(x)= \sin\Bigl(\frac{\pi^2}{12}x\Bigr)\approx \frac{\pi^2}{12}x.

Similarly, g(x)=2πsinx2πx.g(x)=2\pi\sin x\approx2\pi x.

Therefore,

f(x)g(x)π212x2πx=π21212π=π24.\frac{f(x)}{g(x)}\approx \frac{\frac{\pi^2}{12}x}{2\pi x}=\frac{\pi^2}{12}\cdot\frac{1}{2\pi}=\frac{\pi}{24}.

Thus,

limx0f(x)g(x)=π24π6.\lim_{x\to0}\frac{f(x)}{g(x)}=\frac{\pi}{24}\neq\frac{\pi}{6}.

So, (C) is false.

(D) Existence of xx such that (gf)(x)=1(g\circ f)(x)=1:

We have

(gf)(x)=g(f(x))=2πsin(f(x)).(g\circ f)(x)= g(f(x))=2\pi\sin\bigl(f(x)\bigr).

Since f(x)f(x) takes all values in [12,12]\left[-\frac{1}{2},\frac{1}{2}\right] and the sine function is continuous and increasing on that interval, sin(f(x))\sin(f(x)) will vary continuously between

sin(12)andsin(12).\sin\left(-\frac{1}{2}\right)\quad \text{and}\quad \sin\left(\frac{1}{2}\right).

Numerically, sin(12)0.4794\sin\left(\frac{1}{2}\right)\approx 0.4794 and sin(12)0.4794\sin\left(-\frac{1}{2}\right)\approx -0.4794. Therefore, 2πsin(f(x))2\pi\sin(f(x)) will sweep the interval approximately

[2π(0.4794),2π(0.4794)][3.012,3.012].\left[-2\pi(0.4794),\,2\pi(0.4794)\right]\approx [-3.012,\,3.012].

Since 11 lies in this interval, by the Intermediate Value Theorem there exists some xx for which

(gf)(x)=1.(g\circ f)(x)=1.

So, (D) is true.

Final Answer: The correct statements are (A), (B), and (D).