Solveeit Logo

Question

Question: Let f(x) = sin <img src="https://cdn.pureessence.tech/canvas_194.png?top_left_x=1093&top_left_y=300&...

Let f(x) = sin + cos , {.} denotes the fraction part. Then the set of values of a, for which f(x) can attain its maximum value is –

A

(0,4/p)

B

(p/4, )

C

(0, )

D

) None

Explanation

Solution

)

Sol. \ f(x) = sin q + cos q = 2\sqrt { 2 } sin (π4+θ)\left( \frac { \pi } { 4 } + \theta \right)

maximum value at q = π4\frac { \pi } { 4 }

\ = π4\frac { \pi } { 4 } Ž {x} = πa4\frac { \pi \mathrm { a } } { 4 }

Q 0 £ πa4\frac { \pi \mathrm { a } } { 4 }< 1 Ž

Ž a Ī (0,π4)\left( 0 , \frac { \pi } { 4 } \right) Q a ¹ 0