Solveeit Logo

Question

Question: Let $f(x)$ satisfy the functional equation $2f(x)+f(1-x)=x^2 \forall x \in R$, then $f'(5)$ is:...

Let f(x)f(x) satisfy the functional equation 2f(x)+f(1x)=x2xR2f(x)+f(1-x)=x^2 \forall x \in R, then f(5)f'(5) is:

A

4

B

10

C

12

D

0

Answer

4

Explanation

Solution

To find f(5)f'(5), we first need to find the expression for f(x)f(x).

  1. Set up a system of equations:

    We are given: 2f(x)+f(1x)=x22f(x) + f(1-x) = x^2 ...(1)

    Replacing xx with (1x)(1-x) in equation (1), we get: 2f(1x)+f(1(1x))=(1x)22f(1-x) + f(1-(1-x)) = (1-x)^2 2f(1x)+f(x)=(1x)22f(1-x) + f(x) = (1-x)^2 ...(2)

  2. Solve for f(x)f(x):

    From equation (1), we can express f(1x)f(1-x) as: f(1x)=x22f(x)f(1-x) = x^2 - 2f(x)

    Substitute this into equation (2): f(x)+2(x22f(x))=(1x)2f(x) + 2(x^2 - 2f(x)) = (1-x)^2 f(x)+2x24f(x)=12x+x2f(x) + 2x^2 - 4f(x) = 1 - 2x + x^2 3f(x)=x22x+1-3f(x) = -x^2 - 2x + 1 f(x)=13(x2+2x1)f(x) = \frac{1}{3}(x^2 + 2x - 1)

  3. Differentiate f(x)f(x):

    f(x)=ddx(13(x2+2x1))f'(x) = \frac{d}{dx} \left( \frac{1}{3}(x^2 + 2x - 1) \right) f(x)=13(2x+2)f'(x) = \frac{1}{3}(2x + 2)

  4. Evaluate f(5)f'(5):

    f(5)=13(2(5)+2)f'(5) = \frac{1}{3}(2(5) + 2) f(5)=13(12)f'(5) = \frac{1}{3}(12) f(5)=4f'(5) = 4