Question
Question: Let $f(x)$ satisfy the functional equation $2f(x)+f(1-x)=x^2 \forall x \in R$, then $f'(5)$ is:...
Let f(x) satisfy the functional equation 2f(x)+f(1−x)=x2∀x∈R, then f′(5) is:

A
4
B
10
C
12
D
0
Answer
4
Explanation
Solution
To find f′(5), we first need to find the expression for f(x).
-
Set up a system of equations:
We are given: 2f(x)+f(1−x)=x2 ...(1)
Replacing x with (1−x) in equation (1), we get: 2f(1−x)+f(1−(1−x))=(1−x)2 2f(1−x)+f(x)=(1−x)2 ...(2)
-
Solve for f(x):
From equation (1), we can express f(1−x) as: f(1−x)=x2−2f(x)
Substitute this into equation (2): f(x)+2(x2−2f(x))=(1−x)2 f(x)+2x2−4f(x)=1−2x+x2 −3f(x)=−x2−2x+1 f(x)=31(x2+2x−1)
-
Differentiate f(x):
f′(x)=dxd(31(x2+2x−1)) f′(x)=31(2x+2)
-
Evaluate f′(5):
f′(5)=31(2(5)+2) f′(5)=31(12) f′(5)=4