Solveeit Logo

Question

Question: Let $f(x) = \lim_{n\to\infty} \left( \frac{n^n (x+n)(x+\frac{n}{2})...(x+\frac{n}{n})}{n!(x^2+n^2)(x...

Let f(x)=limn(nn(x+n)(x+n2)...(x+nn)n!(x2+n2)(x2+n24)...(x2+n2n2))1nf(x) = \lim_{n\to\infty} \left( \frac{n^n (x+n)(x+\frac{n}{2})...(x+\frac{n}{n})}{n!(x^2+n^2)(x^2+\frac{n^2}{4})...(x^2+\frac{n^2}{n^2})} \right)^{\frac{1}{n}}

Answer

f(x)=exp{01ln1+xt1+x2t2dt}\displaystyle f(x)=\exp\Biggl\{\int_0^1\ln\frac{1+xt}{1+x^2t^2}\,dt\Biggr\}

Explanation

Solution

Rewrite each product by factoring out the dominant nn–terms and take logarithms. Express the sums as Riemann integrals in the limit nn\to\infty. After cancellation and using Stirling’s formula, the limit becomes
lnf(x)=01ln1+xt1+x2t2dt\ln f(x)=\int_0^1\ln\frac{1+xt}{1+x^2t^2}\,dt. Exponentiating gives the answer.