Solveeit Logo

Question

Question: Let $f(x) = \lim_{n\to\infty} \frac{n^n(x+n)(x+\frac{n}{2})...(x+\frac{n}{n})}{n!(x^2+n^2)(x^2+\frac...

Let f(x)=limnnn(x+n)(x+n2)...(x+nn)n!(x2+n2)(x2+n24)...(x2+n2n2)f(x) = \lim_{n\to\infty} \frac{n^n(x+n)(x+\frac{n}{2})...(x+\frac{n}{n})}{n!(x^2+n^2)(x^2+\frac{n^2}{4})...(x^2+\frac{n^2}{n^2})}, for all x>0x>0. Then

A

f(12)f(1)f(\frac{1}{2})\ge f(1)

B

f(13)f(23)f(\frac{1}{3})\le f(\frac{2}{3})

C

f(2)0f'(2)\le 0

D

f(3)f(3)f(2)f(2)\frac{f'(3)}{f(3)}\ge \frac{f'(2)}{f(2)}

Answer

A, D

Explanation

Solution

To determine f(x)f(x), we simplify the given expression: f(x)=limnnn(x+n)(x+n2)...(x+nn)n!(x2+n2)(x2+n24)...(x2+n2n2)f(x) = \lim_{n\to\infty} \frac{n^n(x+n)(x+\frac{n}{2})...(x+\frac{n}{n})}{n!(x^2+n^2)(x^2+\frac{n^2}{4})...(x^2+\frac{n^2}{n^2})} The numerator can be written as N=nnk=1n(x+nk)N = n^n \prod_{k=1}^{n} (x+\frac{n}{k}). The denominator can be written as D=n!k=1n(x2+n2k2)D = n! \prod_{k=1}^{n} (x^2+\frac{n^2}{k^2}).

Let's factor out nn from each term in the numerator product and n2n^2 from each term in the denominator product: k=1n(x+nk)=k=1nn(xn+1k)=nnk=1n(xn+1k)\prod_{k=1}^{n} (x+\frac{n}{k}) = \prod_{k=1}^{n} n(\frac{x}{n}+\frac{1}{k}) = n^n \prod_{k=1}^{n} (\frac{x}{n}+\frac{1}{k}). k=1n(x2+n2k2)=k=1nn2(x2n2+1k2)=n2nk=1n(x2n2+1k2)\prod_{k=1}^{n} (x^2+\frac{n^2}{k^2}) = \prod_{k=1}^{n} n^2(\frac{x^2}{n^2}+\frac{1}{k^2}) = n^{2n} \prod_{k=1}^{n} (\frac{x^2}{n^2}+\frac{1}{k^2}).

Substitute these back into the expression for f(x)f(x): f(x)=limnnnnnk=1n(xn+1k)n!n2nk=1n(x2n2+1k2)=limn1n!n2nn2nk=1nxn+1kx2n2+1k2f(x) = \lim_{n\to\infty} \frac{n^n \cdot n^n \prod_{k=1}^{n} (\frac{x}{n}+\frac{1}{k})}{n! \cdot n^{2n} \prod_{k=1}^{n} (\frac{x^2}{n^2}+\frac{1}{k^2})} = \lim_{n\to\infty} \frac{1}{n!} \frac{n^{2n}}{n^{2n}} \prod_{k=1}^{n} \frac{\frac{x}{n}+\frac{1}{k}}{\frac{x^2}{n^2}+\frac{1}{k^2}} f(x)=limn1n!k=1nk(x+n/k)k2(x2+n2/k2)kf(x) = \lim_{n\to\infty} \frac{1}{n!} \prod_{k=1}^{n} \frac{k(x+n/k)}{k^2(x^2+n^2/k^2)} \cdot k This simplification was incorrect in my scratchpad. Let's restart the main simplification part.

Let's use the form f(x)=limnk=1n(1+kxn)k=1n(1+k2x2n2)f(x) = \lim_{n\to\infty} \frac{\prod_{k=1}^{n} (1+\frac{kx}{n})}{\prod_{k=1}^{n} (1+\frac{k^2x^2}{n^2})}. This was derived correctly. Let P1=k=1n(1+kxn)P_1 = \prod_{k=1}^{n} (1+\frac{kx}{n}) and P2=k=1n(1+k2x2n2)P_2 = \prod_{k=1}^{n} (1+\frac{k^2x^2}{n^2}). We evaluate limnlnP1\lim_{n\to\infty} \ln P_1 and limnlnP2\lim_{n\to\infty} \ln P_2 using Riemann sums. limnlnP1=limnk=1nln(1+kxn)=01ln(1+tx)dt\lim_{n\to\infty} \ln P_1 = \lim_{n\to\infty} \sum_{k=1}^{n} \ln(1+\frac{kx}{n}) = \int_0^1 \ln(1+tx) dt. Let u=1+txu=1+tx, du=xdtdu=x dt. When t=0,u=1t=0, u=1. When t=1,u=1+xt=1, u=1+x. 01ln(1+tx)dt=1x11+xlnudu=1x[ulnuu]11+x\int_0^1 \ln(1+tx) dt = \frac{1}{x} \int_1^{1+x} \ln u du = \frac{1}{x} [u\ln u - u]_1^{1+x} =1x[(1+x)ln(1+x)(1+x)(1ln11)]=1x[(1+x)ln(1+x)x]= \frac{1}{x} [(1+x)\ln(1+x) - (1+x) - (1\ln 1 - 1)] = \frac{1}{x} [(1+x)\ln(1+x) - x]. So, limnP1=e(1+x)ln(1+x)xx=eln((1+x)(1+x)/x)e1=(1+x)(1+x)/xe\lim_{n\to\infty} P_1 = e^{\frac{(1+x)\ln(1+x)-x}{x}} = e^{\ln((1+x)^{(1+x)/x})} e^{-1} = \frac{(1+x)^{(1+x)/x}}{e}.

limnlnP2=limnk=1nln(1+k2x2n2)=01ln(1+t2x2)dt\lim_{n\to\infty} \ln P_2 = \lim_{n\to\infty} \sum_{k=1}^{n} \ln(1+\frac{k^2x^2}{n^2}) = \int_0^1 \ln(1+t^2x^2) dt. Let u=txu=tx, du=xdtdu=x dt. When t=0,u=0t=0, u=0. When t=1,u=xt=1, u=x. 01ln(1+t2x2)dt=1x0xln(1+u2)du\int_0^1 \ln(1+t^2x^2) dt = \frac{1}{x} \int_0^x \ln(1+u^2) du. Using integration by parts: ln(1+u2)du=uln(1+u2)u2u1+u2du=uln(1+u2)2u21+u2du\int \ln(1+u^2) du = u\ln(1+u^2) - \int u \frac{2u}{1+u^2} du = u\ln(1+u^2) - 2\int \frac{u^2}{1+u^2} du =uln(1+u2)2(111+u2)du=uln(1+u2)2u+2arctanu= u\ln(1+u^2) - 2\int (1 - \frac{1}{1+u^2}) du = u\ln(1+u^2) - 2u + 2\arctan u. So, 1x[uln(1+u2)2u+2arctanu]0x=1x[xln(1+x2)2x+2arctanx]\frac{1}{x} [u\ln(1+u^2) - 2u + 2\arctan u]_0^x = \frac{1}{x} [x\ln(1+x^2) - 2x + 2\arctan x]. So, limnP2=exln(1+x2)2x+2arctanxx=eln(1+x2)e2e2arctanxx=(1+x2)e2e2arctanxx\lim_{n\to\infty} P_2 = e^{\frac{x\ln(1+x^2)-2x+2\arctan x}{x}} = e^{\ln(1+x^2)} e^{-2} e^{\frac{2\arctan x}{x}} = (1+x^2) e^{-2} e^{\frac{2\arctan x}{x}}.

Therefore, f(x)=(1+x)(1+x)/xe(1+x2)e2e2arctanxx=(1+x)(1+x)/x1+x2e12arctanxxf(x) = \frac{\frac{(1+x)^{(1+x)/x}}{e}}{(1+x^2) e^{-2} e^{\frac{2\arctan x}{x}}} = \frac{(1+x)^{(1+x)/x}}{1+x^2} e^{1 - \frac{2\arctan x}{x}}.

Let's analyze f(x)f(x). Let g(x)=lnf(x)=1+xxln(1+x)ln(1+x2)+12arctanxxg(x) = \ln f(x) = \frac{1+x}{x}\ln(1+x) - \ln(1+x^2) + 1 - \frac{2\arctan x}{x}. g(x)=(1+1x)ln(1+x)ln(1+x2)+12arctanxxg(x) = (1+\frac{1}{x})\ln(1+x) - \ln(1+x^2) + 1 - \frac{2\arctan x}{x}.

To check the options, we need f(x)f'(x). It's easier to find g(x)=f(x)f(x)g'(x) = \frac{f'(x)}{f(x)}. g(x)=(1x2ln(1+x)+(1+1x)11+x)2x1+x22(1x2arctanx+1x11+x2)g'(x) = \left(-\frac{1}{x^2}\ln(1+x) + (1+\frac{1}{x})\frac{1}{1+x}\right) - \frac{2x}{1+x^2} - 2\left(-\frac{1}{x^2}\arctan x + \frac{1}{x}\frac{1}{1+x^2}\right) g(x)=ln(1+x)x2+1x2x1+x2+2arctanxx22x(1+x2)g'(x) = -\frac{\ln(1+x)}{x^2} + \frac{1}{x} - \frac{2x}{1+x^2} + \frac{2\arctan x}{x^2} - \frac{2}{x(1+x^2)} g(x)=2arctanxln(1+x)x2+1x2x1+x22x(1+x2)g'(x) = \frac{2\arctan x - \ln(1+x)}{x^2} + \frac{1}{x} - \frac{2x}{1+x^2} - \frac{2}{x(1+x^2)} g(x)=2arctanxln(1+x)x2+x(1+x2)2x22xx2(1+x2)g'(x) = \frac{2\arctan x - \ln(1+x)}{x^2} + \frac{x(1+x^2) - 2x^2 - 2x}{x^2(1+x^2)} g(x)=2arctanxln(1+x)x2+x+x32x22xx2(1+x2)g'(x) = \frac{2\arctan x - \ln(1+x)}{x^2} + \frac{x+x^3 - 2x^2 - 2x}{x^2(1+x^2)} g(x)=2arctanxln(1+x)x2+x32x2xx2(1+x2)g'(x) = \frac{2\arctan x - \ln(1+x)}{x^2} + \frac{x^3 - 2x^2 - x}{x^2(1+x^2)} g(x)=2arctanxln(1+x)x2+x22x1x(1+x2)g'(x) = \frac{2\arctan x - \ln(1+x)}{x^2} + \frac{x^2 - 2x - 1}{x(1+x^2)}.

Let's recheck the derivative of 1+xxln(1+x)\frac{1+x}{x}\ln(1+x). ddx((1x+1)ln(1+x))=(1x2)ln(1+x)+(1x+1)11+x=ln(1+x)x2+1x\frac{d}{dx} \left( (\frac{1}{x}+1)\ln(1+x) \right) = (-\frac{1}{x^2})\ln(1+x) + (\frac{1}{x}+1)\frac{1}{1+x} = -\frac{\ln(1+x)}{x^2} + \frac{1}{x}. This is correct. Let's recheck the derivative of 2arctanxx\frac{2\arctan x}{x}. ddx(2arctanxx)=211+x2xarctanxx2=2x(1+x2)x22arctanxx2=2x(1+x2)2arctanxx2\frac{d}{dx} \left( \frac{2\arctan x}{x} \right) = 2 \frac{\frac{1}{1+x^2}x - \arctan x}{x^2} = \frac{2x}{(1+x^2)x^2} - \frac{2\arctan x}{x^2} = \frac{2}{x(1+x^2)} - \frac{2\arctan x}{x^2}. So, ddx(2arctanxx)=2x(1+x2)+2arctanxx2-\frac{d}{dx} \left( \frac{2\arctan x}{x} \right) = -\frac{2}{x(1+x^2)} + \frac{2\arctan x}{x^2}. This is correct.

So, g(x)=ln(1+x)x2+1x2x1+x2(2x(1+x2)2arctanxx2)g'(x) = -\frac{\ln(1+x)}{x^2} + \frac{1}{x} - \frac{2x}{1+x^2} - \left(\frac{2}{x(1+x^2)} - \frac{2\arctan x}{x^2}\right) g(x)=2arctanxln(1+x)x2+1x2x1+x22x(1+x2)g'(x) = \frac{2\arctan x - \ln(1+x)}{x^2} + \frac{1}{x} - \frac{2x}{1+x^2} - \frac{2}{x(1+x^2)}. This is correct. g(x)=2arctanxln(1+x)x2+x(1+x2)2x22x(1+x2)g'(x) = \frac{2\arctan x - \ln(1+x)}{x^2} + \frac{x(1+x^2) - 2x^2 - 2}{x(1+x^2)}. g(x)=2arctanxln(1+x)x2+x32x2+x2x(1+x2)g'(x) = \frac{2\arctan x - \ln(1+x)}{x^2} + \frac{x^3 - 2x^2 + x - 2}{x(1+x^2)}. g(x)=2arctanxln(1+x)x2+x2(x2)+(x2)x(1+x2)=2arctanxln(1+x)x2+(x2+1)(x2)x(1+x2)g'(x) = \frac{2\arctan x - \ln(1+x)}{x^2} + \frac{x^2(x-2) + (x-2)}{x(1+x^2)} = \frac{2\arctan x - \ln(1+x)}{x^2} + \frac{(x^2+1)(x-2)}{x(1+x^2)} g(x)=2arctanxln(1+x)x2+x2x=2arctanxln(1+x)+x(x2)x2g'(x) = \frac{2\arctan x - \ln(1+x)}{x^2} + \frac{x-2}{x} = \frac{2\arctan x - \ln(1+x) + x(x-2)}{x^2}. g(x)=2arctanxln(1+x)+x22xx2g'(x) = \frac{2\arctan x - \ln(1+x) + x^2 - 2x}{x^2}.

Let h(x)=2arctanxln(1+x)+x22xh(x) = 2\arctan x - \ln(1+x) + x^2 - 2x. We need to analyze the sign of h(x)h(x). h(x)=21+x211+x+2x2h'(x) = \frac{2}{1+x^2} - \frac{1}{1+x} + 2x - 2. h(x)=2(1+x)(1+x2)(1+x2)(1+x)+2(x1)=2+2x1x2(1+x2)(1+x)+2(x1)=1+2xx2(1+x2)(1+x)+2(x1)h'(x) = \frac{2(1+x) - (1+x^2)}{(1+x^2)(1+x)} + 2(x-1) = \frac{2+2x-1-x^2}{(1+x^2)(1+x)} + 2(x-1) = \frac{1+2x-x^2}{(1+x^2)(1+x)} + 2(x-1). For x>0x>0: h(1)=2arctan1ln2+12=2(π/4)ln21=π/2ln211.570.6931=0.123<0h(1) = 2\arctan 1 - \ln 2 + 1 - 2 = 2(\pi/4) - \ln 2 - 1 = \pi/2 - \ln 2 - 1 \approx 1.57 - 0.693 - 1 = -0.123 < 0. h(2)=2arctan2ln3+44=2arctan2ln32(1.107)1.098=2.2141.098=1.116>0h(2) = 2\arctan 2 - \ln 3 + 4 - 4 = 2\arctan 2 - \ln 3 \approx 2(1.107) - 1.098 = 2.214 - 1.098 = 1.116 > 0. Since h(1)<0h(1)<0 and h(2)>0h(2)>0, there is a root between 1 and 2.

Consider x=1x=1: g(1)=h(1)12=π/2ln21<0g'(1) = \frac{h(1)}{1^2} = \pi/2 - \ln 2 - 1 < 0. Since f(x)=f(x)g(x)f'(x) = f(x) g'(x) and f(x)>0f(x)>0 for x>0x>0, the sign of f(x)f'(x) is the same as g(x)g'(x). So f(1)<0f'(1) < 0.

Let's check the options. (A) f(12)f(1)f(\frac{1}{2})\ge f(1). This means f(x)f(x) is decreasing from x=1/2x=1/2 to x=1x=1. (B) f(13)f(23)f(\frac{1}{3})\le f(\frac{2}{3}). This means f(x)f(x) is increasing from x=1/3x=1/3 to x=2/3x=2/3. (C) f(2)0f'(2)\le 0. This means g(2)0g'(2) \le 0. h(2)=2arctan2ln31.116>0h(2) = 2\arctan 2 - \ln 3 \approx 1.116 > 0. So g(2)>0g'(2) > 0. Thus f(2)>0f'(2) > 0. Option (C) is false.

(D) f(3)f(3)f(2)f(2)\frac{f'(3)}{f(3)}\ge \frac{f'(2)}{f(2)}. This is g(3)g(2)g'(3) \ge g'(2). We know g(2)=h(2)4=2arctan2ln341.1164=0.279g'(2) = \frac{h(2)}{4} = \frac{2\arctan 2 - \ln 3}{4} \approx \frac{1.116}{4} = 0.279. h(3)=2arctan3ln4+96=2arctan3ln4+3h(3) = 2\arctan 3 - \ln 4 + 9 - 6 = 2\arctan 3 - \ln 4 + 3. 2arctan32(1.249)=2.4982\arctan 3 \approx 2(1.249) = 2.498. ln4=2ln22(0.693)=1.386\ln 4 = 2\ln 2 \approx 2(0.693) = 1.386. h(3)2.4981.386+3=4.112>0h(3) \approx 2.498 - 1.386 + 3 = 4.112 > 0. g(3)=h(3)94.11290.457g'(3) = \frac{h(3)}{9} \approx \frac{4.112}{9} \approx 0.457. Since 0.4570.2790.457 \ge 0.279, option (D) is true.

Let's confirm the monotonicity of h(x)h(x). h(x)=1+2xx2(1+x2)(1+x)+2(x1)h'(x) = \frac{1+2x-x^2}{(1+x^2)(1+x)} + 2(x-1). For x>1x>1, x1>0x-1>0. The term 1+2xx2(1+x2)(1+x)\frac{1+2x-x^2}{(1+x^2)(1+x)}: The numerator 1+2xx21+2x-x^2 is a downward parabola with roots x=2±44(1)(1)2=2±82=12x = \frac{-2 \pm \sqrt{4-4(-1)(1)}}{-2} = \frac{-2 \pm \sqrt{8}}{-2} = 1 \mp \sqrt{2}. So 1+2xx2>01+2x-x^2 > 0 for 12<x<1+21-\sqrt{2} < x < 1+\sqrt{2}. 1+21+1.414=2.4141+\sqrt{2} \approx 1+1.414 = 2.414. So for x(1,1+2)x \in (1, 1+\sqrt{2}), h(x)>0h'(x) > 0. Since h(1)<0h(1)<0 and h(2)>0h(2)>0, and h(x)>0h'(x)>0 for x(1,2.414)x \in (1, 2.414), it means h(x)h(x) is increasing in this interval. So g(x)g'(x) increases from x=1x=1 to x2.414x \approx 2.414. Since g(2)>0g'(2)>0 and g(3)>0g'(3)>0, and g(x)g'(x) is increasing in (1,2.414)(1, 2.414), and g(x)g'(x) decreases after 2.4142.414, we need to compare g(2)g'(2) and g(3)g'(3). The root of h(x)h(x) is between 1 and 2. Let's call it x0x_0. For x>x0x>x_0, h(x)>0h(x)>0, so g(x)>0g'(x)>0. For x<x0x<x_0, h(x)<0h(x)<0, so g(x)<0g'(x)<0. This means f(x)f(x) is decreasing for x(0,x0)x \in (0, x_0) and increasing for x(x0,)x \in (x_0, \infty). Since x0(1,2)x_0 \in (1,2), f(1/2)>f(1)f(1/2) > f(1) because 1/2<1<x01/2 < 1 < x_0. This makes option (A) true. Also f(1/3)<f(2/3)f(1/3) < f(2/3) is true if 1/31/3 and 2/32/3 are both less than x0x_0. Since x0>1x_0 > 1, 1/3<2/3<1<x01/3 < 2/3 < 1 < x_0. So f(x)f(x) is decreasing in this interval. Therefore f(1/3)>f(2/3)f(1/3) > f(2/3). So option (B) is false.

Let's recheck option (A) and (B). f(x)f(x) is decreasing for x(0,x0)x \in (0, x_0) where x0(1,2)x_0 \in (1,2). (A) f(1/2)f(1)f(1/2) \ge f(1). Since 1/2<11/2 < 1 and both are in (0,x0)(0, x_0), f(x)f(x) is decreasing. So f(1/2)>f(1)f(1/2) > f(1). Option (A) is true. (B) f(1/3)f(2/3)f(1/3) \le f(2/3). Since 1/3<2/31/3 < 2/3 and both are in (0,x0)(0, x_0), f(x)f(x) is decreasing. So f(1/3)>f(2/3)f(1/3) > f(2/3). Option (B) is false.

So (A) and (D) are correct.