Question
Question: Let $f(x) = \lim_{n\to\infty} \frac{n^n(x+n)(x+\frac{n}{2})...(x+\frac{n}{n})}{n!(x^2+n^2)(x^2+\frac...
Let f(x)=limn→∞n!(x2+n2)(x2+4n2)...(x2+n2n2)nn(x+n)(x+2n)...(x+nn), for all x>0. Then

f(21)≥f(1)
f(31)≤f(32)
f′(2)≤0
f(3)f′(3)≥f(2)f′(2)
A, D
Solution
To determine f(x), we simplify the given expression: f(x)=limn→∞n!(x2+n2)(x2+4n2)...(x2+n2n2)nn(x+n)(x+2n)...(x+nn) The numerator can be written as N=nn∏k=1n(x+kn). The denominator can be written as D=n!∏k=1n(x2+k2n2).
Let's factor out n from each term in the numerator product and n2 from each term in the denominator product: ∏k=1n(x+kn)=∏k=1nn(nx+k1)=nn∏k=1n(nx+k1). ∏k=1n(x2+k2n2)=∏k=1nn2(n2x2+k21)=n2n∏k=1n(n2x2+k21).
Substitute these back into the expression for f(x): f(x)=limn→∞n!⋅n2n∏k=1n(n2x2+k21)nn⋅nn∏k=1n(nx+k1)=limn→∞n!1n2nn2n∏k=1nn2x2+k21nx+k1 f(x)=limn→∞n!1∏k=1nk2(x2+n2/k2)k(x+n/k)⋅k This simplification was incorrect in my scratchpad. Let's restart the main simplification part.
Let's use the form f(x)=limn→∞∏k=1n(1+n2k2x2)∏k=1n(1+nkx). This was derived correctly. Let P1=∏k=1n(1+nkx) and P2=∏k=1n(1+n2k2x2). We evaluate limn→∞lnP1 and limn→∞lnP2 using Riemann sums. limn→∞lnP1=limn→∞∑k=1nln(1+nkx)=∫01ln(1+tx)dt. Let u=1+tx, du=xdt. When t=0,u=1. When t=1,u=1+x. ∫01ln(1+tx)dt=x1∫11+xlnudu=x1[ulnu−u]11+x =x1[(1+x)ln(1+x)−(1+x)−(1ln1−1)]=x1[(1+x)ln(1+x)−x]. So, limn→∞P1=ex(1+x)ln(1+x)−x=eln((1+x)(1+x)/x)e−1=e(1+x)(1+x)/x.
limn→∞lnP2=limn→∞∑k=1nln(1+n2k2x2)=∫01ln(1+t2x2)dt. Let u=tx, du=xdt. When t=0,u=0. When t=1,u=x. ∫01ln(1+t2x2)dt=x1∫0xln(1+u2)du. Using integration by parts: ∫ln(1+u2)du=uln(1+u2)−∫u1+u22udu=uln(1+u2)−2∫1+u2u2du =uln(1+u2)−2∫(1−1+u21)du=uln(1+u2)−2u+2arctanu. So, x1[uln(1+u2)−2u+2arctanu]0x=x1[xln(1+x2)−2x+2arctanx]. So, limn→∞P2=exxln(1+x2)−2x+2arctanx=eln(1+x2)e−2ex2arctanx=(1+x2)e−2ex2arctanx.
Therefore, f(x)=(1+x2)e−2ex2arctanxe(1+x)(1+x)/x=1+x2(1+x)(1+x)/xe1−x2arctanx.
Let's analyze f(x). Let g(x)=lnf(x)=x1+xln(1+x)−ln(1+x2)+1−x2arctanx. g(x)=(1+x1)ln(1+x)−ln(1+x2)+1−x2arctanx.
To check the options, we need f′(x). It's easier to find g′(x)=f(x)f′(x). g′(x)=(−x21ln(1+x)+(1+x1)1+x1)−1+x22x−2(−x21arctanx+x11+x21) g′(x)=−x2ln(1+x)+x1−1+x22x+x22arctanx−x(1+x2)2 g′(x)=x22arctanx−ln(1+x)+x1−1+x22x−x(1+x2)2 g′(x)=x22arctanx−ln(1+x)+x2(1+x2)x(1+x2)−2x2−2x g′(x)=x22arctanx−ln(1+x)+x2(1+x2)x+x3−2x2−2x g′(x)=x22arctanx−ln(1+x)+x2(1+x2)x3−2x2−x g′(x)=x22arctanx−ln(1+x)+x(1+x2)x2−2x−1.
Let's recheck the derivative of x1+xln(1+x). dxd((x1+1)ln(1+x))=(−x21)ln(1+x)+(x1+1)1+x1=−x2ln(1+x)+x1. This is correct. Let's recheck the derivative of x2arctanx. dxd(x2arctanx)=2x21+x21x−arctanx=(1+x2)x22x−x22arctanx=x(1+x2)2−x22arctanx. So, −dxd(x2arctanx)=−x(1+x2)2+x22arctanx. This is correct.
So, g′(x)=−x2ln(1+x)+x1−1+x22x−(x(1+x2)2−x22arctanx) g′(x)=x22arctanx−ln(1+x)+x1−1+x22x−x(1+x2)2. This is correct. g′(x)=x22arctanx−ln(1+x)+x(1+x2)x(1+x2)−2x2−2. g′(x)=x22arctanx−ln(1+x)+x(1+x2)x3−2x2+x−2. g′(x)=x22arctanx−ln(1+x)+x(1+x2)x2(x−2)+(x−2)=x22arctanx−ln(1+x)+x(1+x2)(x2+1)(x−2) g′(x)=x22arctanx−ln(1+x)+xx−2=x22arctanx−ln(1+x)+x(x−2). g′(x)=x22arctanx−ln(1+x)+x2−2x.
Let h(x)=2arctanx−ln(1+x)+x2−2x. We need to analyze the sign of h(x). h′(x)=1+x22−1+x1+2x−2. h′(x)=(1+x2)(1+x)2(1+x)−(1+x2)+2(x−1)=(1+x2)(1+x)2+2x−1−x2+2(x−1)=(1+x2)(1+x)1+2x−x2+2(x−1). For x>0: h(1)=2arctan1−ln2+1−2=2(π/4)−ln2−1=π/2−ln2−1≈1.57−0.693−1=−0.123<0. h(2)=2arctan2−ln3+4−4=2arctan2−ln3≈2(1.107)−1.098=2.214−1.098=1.116>0. Since h(1)<0 and h(2)>0, there is a root between 1 and 2.
Consider x=1: g′(1)=12h(1)=π/2−ln2−1<0. Since f′(x)=f(x)g′(x) and f(x)>0 for x>0, the sign of f′(x) is the same as g′(x). So f′(1)<0.
Let's check the options. (A) f(21)≥f(1). This means f(x) is decreasing from x=1/2 to x=1. (B) f(31)≤f(32). This means f(x) is increasing from x=1/3 to x=2/3. (C) f′(2)≤0. This means g′(2)≤0. h(2)=2arctan2−ln3≈1.116>0. So g′(2)>0. Thus f′(2)>0. Option (C) is false.
(D) f(3)f′(3)≥f(2)f′(2). This is g′(3)≥g′(2). We know g′(2)=4h(2)=42arctan2−ln3≈41.116=0.279. h(3)=2arctan3−ln4+9−6=2arctan3−ln4+3. 2arctan3≈2(1.249)=2.498. ln4=2ln2≈2(0.693)=1.386. h(3)≈2.498−1.386+3=4.112>0. g′(3)=9h(3)≈94.112≈0.457. Since 0.457≥0.279, option (D) is true.
Let's confirm the monotonicity of h(x). h′(x)=(1+x2)(1+x)1+2x−x2+2(x−1). For x>1, x−1>0. The term (1+x2)(1+x)1+2x−x2: The numerator 1+2x−x2 is a downward parabola with roots x=−2−2±4−4(−1)(1)=−2−2±8=1∓2. So 1+2x−x2>0 for 1−2<x<1+2. 1+2≈1+1.414=2.414. So for x∈(1,1+2), h′(x)>0. Since h(1)<0 and h(2)>0, and h′(x)>0 for x∈(1,2.414), it means h(x) is increasing in this interval. So g′(x) increases from x=1 to x≈2.414. Since g′(2)>0 and g′(3)>0, and g′(x) is increasing in (1,2.414), and g′(x) decreases after 2.414, we need to compare g′(2) and g′(3). The root of h(x) is between 1 and 2. Let's call it x0. For x>x0, h(x)>0, so g′(x)>0. For x<x0, h(x)<0, so g′(x)<0. This means f(x) is decreasing for x∈(0,x0) and increasing for x∈(x0,∞). Since x0∈(1,2), f(1/2)>f(1) because 1/2<1<x0. This makes option (A) true. Also f(1/3)<f(2/3) is true if 1/3 and 2/3 are both less than x0. Since x0>1, 1/3<2/3<1<x0. So f(x) is decreasing in this interval. Therefore f(1/3)>f(2/3). So option (B) is false.
Let's recheck option (A) and (B). f(x) is decreasing for x∈(0,x0) where x0∈(1,2). (A) f(1/2)≥f(1). Since 1/2<1 and both are in (0,x0), f(x) is decreasing. So f(1/2)>f(1). Option (A) is true. (B) f(1/3)≤f(2/3). Since 1/3<2/3 and both are in (0,x0), f(x) is decreasing. So f(1/3)>f(2/3). Option (B) is false.
So (A) and (D) are correct.