Solveeit Logo

Question

Question: Let $f(x) = \lim_{n \to \infty} \left( \frac{n^n(x+n)(x+\frac{n}{2})...(x+\frac{n}{n})}{n!(x^2+n^2)(...

Let f(x)=limn(nn(x+n)(x+n2)...(x+nn)n!(x2+n2)(x2+n24)...(x2+n2n2))xnf(x) = \lim_{n \to \infty} \left( \frac{n^n(x+n)(x+\frac{n}{2})...(x+\frac{n}{n})}{n!(x^2+n^2)(x^2+\frac{n^2}{4})...(x^2+\frac{n^2}{n^2})}\right)^{\frac{x}{n}}, for all x>0x>0. Then

A

f(12)f(1)f(\frac{1}{2}) \ge f(1)

B

f(13)f(23)f(\frac{1}{3}) \le f(\frac{2}{3})

C

f(2)0f'(2) \le 0

D

f(3)f(3)f(2)f(2)\frac{f'(3)}{f(3)} \ge \frac{f'(2)}{f(2)}

Answer

B, C

Explanation

Solution

To determine the correct options, we first need to find an explicit expression for f(x)f(x).

Let the expression inside the limit be AnA_n.

An=nn(x+n)(x+n2)...(x+nn)n!(x2+n2)(x2+n24)...(x2+n2n2)A_n = \frac{n^n(x+n)(x+\frac{n}{2})...(x+\frac{n}{n})}{n!(x^2+n^2)(x^2+\frac{n^2}{4})...(x^2+\frac{n^2}{n^2})}

We can rewrite the products as follows:

k=1n(x+nk)=k=1nnk(1+xkn)=nnn!k=1n(1+xkn)\prod_{k=1}^n (x+\frac{n}{k}) = \prod_{k=1}^n \frac{n}{k}(1+\frac{xk}{n}) = \frac{n^n}{n!} \prod_{k=1}^n (1+\frac{xk}{n})

k=1n(x2+n2k2)=k=1nn2k2(1+x2k2n2)=(n2)n(n!)2k=1n(1+x2k2n2)=n2n(n!)2k=1n(1+x2k2n2)\prod_{k=1}^n (x^2+\frac{n^2}{k^2}) = \prod_{k=1}^n \frac{n^2}{k^2}(1+\frac{x^2k^2}{n^2}) = \frac{(n^2)^n}{(n!)^2} \prod_{k=1}^n (1+\frac{x^2k^2}{n^2}) = \frac{n^{2n}}{(n!)^2} \prod_{k=1}^n (1+\frac{x^2k^2}{n^2})

Substitute these into AnA_n:

An=nnnnn!k=1n(1+xkn)n!n2n(n!)2k=1n(1+x2k2n2)A_n = \frac{n^n \frac{n^n}{n!} \prod_{k=1}^n (1+\frac{xk}{n})}{n! \frac{n^{2n}}{(n!)^2} \prod_{k=1}^n (1+\frac{x^2k^2}{n^2})}

An=n2n/n!n2n/n!k=1n(1+xkn)k=1n(1+x2k2n2)=k=1n(1+xkn)k=1n(1+x2k2n2)=k=1n1+xkn1+x2k2n2A_n = \frac{n^{2n}/n!}{n^{2n}/n!} \frac{\prod_{k=1}^n (1+\frac{xk}{n})}{\prod_{k=1}^n (1+\frac{x^2k^2}{n^2})} = \frac{\prod_{k=1}^n (1+\frac{xk}{n})}{\prod_{k=1}^n (1+\frac{x^2k^2}{n^2})} = \prod_{k=1}^n \frac{1+\frac{xk}{n}}{1+\frac{x^2k^2}{n^2}}

Now we need to evaluate f(x)=limn(An)xnf(x) = \lim_{n \to \infty} (A_n)^{\frac{x}{n}}.

Let L=f(x)L = f(x). Then lnL=limnxnlnAn\ln L = \lim_{n \to \infty} \frac{x}{n} \ln A_n.

lnAn=k=1nln(1+xkn1+x2k2n2)\ln A_n = \sum_{k=1}^n \ln\left(\frac{1+\frac{xk}{n}}{1+\frac{x^2k^2}{n^2}}\right).

So, lnL=limnxnk=1nln(1+xkn1+x2k2n2)\ln L = \lim_{n \to \infty} \frac{x}{n} \sum_{k=1}^n \ln\left(\frac{1+\frac{xk}{n}}{1+\frac{x^2k^2}{n^2}}\right).

This is a Riemann sum. Let t=k/nt = k/n and dt=1/ndt = 1/n.

lnL=x01ln(1+xt1+x2t2)dt\ln L = x \int_0^1 \ln\left(\frac{1+xt}{1+x^2t^2}\right) dt.

Thus, f(x)=exp(x01ln(1+xt1+x2t2)dt)f(x) = \exp\left(x \int_0^1 \ln\left(\frac{1+xt}{1+x^2t^2}\right) dt\right).

Let g(x)=lnf(x)=x01ln(1+xt1+x2t2)dtg(x) = \ln f(x) = x \int_0^1 \ln\left(\frac{1+xt}{1+x^2t^2}\right) dt.

We can evaluate the integral using integration by parts.

01ln(1+at)dt=[tln(1+at)]0101at1+atdt=ln(1+a)01(111+at)dt\int_0^1 \ln(1+at) dt = [t\ln(1+at)]_0^1 - \int_0^1 \frac{at}{1+at} dt = \ln(1+a) - \int_0^1 (1-\frac{1}{1+at}) dt

=ln(1+a)[t1aln(1+at)]01=ln(1+a)(11aln(1+a))=(1+1a)ln(1+a)1= \ln(1+a) - [t - \frac{1}{a}\ln(1+at)]_0^1 = \ln(1+a) - (1 - \frac{1}{a}\ln(1+a)) = (1+\frac{1}{a})\ln(1+a) - 1.

So, 01ln(1+xt)dt=(1+1x)ln(1+x)1\int_0^1 \ln(1+xt) dt = (1+\frac{1}{x})\ln(1+x) - 1.

And 01ln(1+x2t2)dt=(1+1x2)ln(1+x2)1\int_0^1 \ln(1+x^2t^2) dt = (1+\frac{1}{x^2})\ln(1+x^2) - 1 is incorrect because the coefficient of t2t^2 is x2x^2, not xx.

For 01ln(1+x2t2)dt\int_0^1 \ln(1+x^2t^2) dt, use u=ln(1+x2t2)u = \ln(1+x^2t^2), dv=dtdv = dt.

du=2x2t1+x2t2dtdu = \frac{2x^2t}{1+x^2t^2} dt, v=tv=t.

01ln(1+x2t2)dt=[tln(1+x2t2)]01012x2t21+x2t2dt\int_0^1 \ln(1+x^2t^2) dt = [t\ln(1+x^2t^2)]_0^1 - \int_0^1 \frac{2x^2t^2}{1+x^2t^2} dt

=ln(1+x2)01(221+x2t2)dt=ln(1+x2)[2t2xarctan(xt)]01= \ln(1+x^2) - \int_0^1 (2 - \frac{2}{1+x^2t^2}) dt = \ln(1+x^2) - [2t - \frac{2}{x}\arctan(xt)]_0^1

=ln(1+x2)(22xarctan(x))= \ln(1+x^2) - (2 - \frac{2}{x}\arctan(x)).

Let I(x)=01ln(1+xt1+x2t2)dt=01ln(1+xt)dt01ln(1+x2t2)dtI(x) = \int_0^1 \ln\left(\frac{1+xt}{1+x^2t^2}\right) dt = \int_0^1 \ln(1+xt) dt - \int_0^1 \ln(1+x^2t^2) dt.

I(x)=((1+1x)ln(1+x)1)(ln(1+x2)2+2xarctan(x))I(x) = \left((1+\frac{1}{x})\ln(1+x) - 1\right) - \left(\ln(1+x^2) - 2 + \frac{2}{x}\arctan(x)\right)

I(x)=(1+1x)ln(1+x)ln(1+x2)+12xarctan(x)I(x) = (1+\frac{1}{x})\ln(1+x) - \ln(1+x^2) + 1 - \frac{2}{x}\arctan(x).

Then g(x)=xI(x)=x((1+1x)ln(1+x)ln(1+x2)+12xarctan(x))g(x) = x I(x) = x\left((1+\frac{1}{x})\ln(1+x) - \ln(1+x^2) + 1 - \frac{2}{x}\arctan(x)\right)

g(x)=(x+1)ln(1+x)xln(1+x2)+x2arctan(x)g(x) = (x+1)\ln(1+x) - x\ln(1+x^2) + x - 2\arctan(x).

To analyze the options, we need g(x)=f(x)f(x)g'(x) = \frac{f'(x)}{f(x)}.

g(x)=ddx((x+1)ln(1+x))ddx(xln(1+x2))+ddx(x)ddx(2arctan(x))g'(x) = \frac{d}{dx}((x+1)\ln(1+x)) - \frac{d}{dx}(x\ln(1+x^2)) + \frac{d}{dx}(x) - \frac{d}{dx}(2\arctan(x))

ddx((x+1)ln(1+x))=ln(1+x)+(x+1)11+x=ln(1+x)+1\frac{d}{dx}((x+1)\ln(1+x)) = \ln(1+x) + (x+1)\frac{1}{1+x} = \ln(1+x) + 1.

ddx(xln(1+x2))=ln(1+x2)+x2x1+x2=ln(1+x2)+2x21+x2\frac{d}{dx}(x\ln(1+x^2)) = \ln(1+x^2) + x\frac{2x}{1+x^2} = \ln(1+x^2) + \frac{2x^2}{1+x^2}.

ddx(x)=1\frac{d}{dx}(x) = 1.

ddx(2arctan(x))=21+x2\frac{d}{dx}(2\arctan(x)) = \frac{2}{1+x^2}.

g(x)=(ln(1+x)+1)(ln(1+x2)+2x21+x2)+121+x2g'(x) = (\ln(1+x) + 1) - (\ln(1+x^2) + \frac{2x^2}{1+x^2}) + 1 - \frac{2}{1+x^2}

g(x)=ln(1+x)ln(1+x2)+22x2+21+x2g'(x) = \ln(1+x) - \ln(1+x^2) + 2 - \frac{2x^2+2}{1+x^2}

g(x)=ln(1+x)ln(1+x2)+22(x2+1)1+x2g'(x) = \ln(1+x) - \ln(1+x^2) + 2 - \frac{2(x^2+1)}{1+x^2}

g(x)=ln(1+x)ln(1+x2)+22g'(x) = \ln(1+x) - \ln(1+x^2) + 2 - 2

g(x)=ln(1+x1+x2)g'(x) = \ln\left(\frac{1+x}{1+x^2}\right).

Now, let's check the options:

Sign of g(x)g'(x):

g(x)>0    1+x1+x2>1    1+x>1+x2    x>x2    x(1x)>0g'(x) > 0 \iff \frac{1+x}{1+x^2} > 1 \iff 1+x > 1+x^2 \iff x > x^2 \iff x(1-x) > 0.

Since x>0x>0, this implies 1x>0    x<11-x>0 \implies x<1.

So, g(x)g(x) (and f(x)f(x)) is increasing for 0<x<10 < x < 1.

g(x)<0    1+x1+x2<1    1+x<1+x2    x<x2    x(1x)<0g'(x) < 0 \iff \frac{1+x}{1+x^2} < 1 \iff 1+x < 1+x^2 \iff x < x^2 \iff x(1-x) < 0.

Since x>0x>0, this implies 1x<0    x>11-x<0 \implies x>1.

So, g(x)g(x) (and f(x)f(x)) is decreasing for x>1x > 1.

g(x)=0    x=1g'(x) = 0 \iff x=1. This is a local maximum for f(x)f(x).

(A) f(12)f(1)f(\frac{1}{2}) \ge f(1).

Since 1/2<11/2 < 1, and f(x)f(x) is increasing on (0,1)(0,1), f(1/2)<f(1)f(1/2) < f(1). So (A) is false.

(B) f(13)f(23)f(\frac{1}{3}) \le f(\frac{2}{3}).

Since 1/3<2/31/3 < 2/3 and both are in (0,1)(0,1), and f(x)f(x) is increasing on (0,1)(0,1), f(1/3)<f(2/3)f(1/3) < f(2/3). So (B) is true.

(C) f(2)0f'(2) \le 0.

Since 2>12 > 1, and f(x)f(x) is decreasing for x>1x>1, f(2)<0f'(2) < 0. So (C) is true.

(D) f(3)f(3)f(2)f(2)\frac{f'(3)}{f(3)} \ge \frac{f'(2)}{f(2)}.

This is equivalent to g(3)g(2)g'(3) \ge g'(2).

To compare g(3)g'(3) and g(2)g'(2), we need to check the monotonicity of g(x)g'(x).

g(x)=ddx(ln(1+x)ln(1+x2))=11+x2x1+x2=1+x22x(1+x)(1+x)(1+x2)=1+x22x2x2(1+x)(1+x2)=x22x+1(1+x)(1+x2)g''(x) = \frac{d}{dx}\left(\ln(1+x) - \ln(1+x^2)\right) = \frac{1}{1+x} - \frac{2x}{1+x^2} = \frac{1+x^2 - 2x(1+x)}{(1+x)(1+x^2)} = \frac{1+x^2-2x-2x^2}{(1+x)(1+x^2)} = \frac{-x^2-2x+1}{(1+x)(1+x^2)}.

The denominator is positive for x>0x>0. We need to check the sign of the numerator x22x+1-x^2-2x+1.

The roots of x22x+1=0-x^2-2x+1=0 are x=2±44(1)(1)2(1)=2±82=2±222=12x = \frac{2 \pm \sqrt{4-4(-1)(1)}}{2(-1)} = \frac{2 \pm \sqrt{8}}{-2} = \frac{2 \pm 2\sqrt{2}}{-2} = -1 \mp \sqrt{2}.

The positive root is x=1+20.414x = -1+\sqrt{2} \approx 0.414.

Since the parabola x22x+1-x^2-2x+1 opens downwards, it is negative for x>1+2x > -1+\sqrt{2}.

Both x=2x=2 and x=3x=3 are greater than 1+2-1+\sqrt{2}.

Therefore, g(x)<0g''(x) < 0 for x>1+2x > -1+\sqrt{2}. This means g(x)g'(x) is a decreasing function for x>1+2x > -1+\sqrt{2}.

Since 2<32 < 3 and g(x)g'(x) is decreasing in this interval, g(2)>g(3)g'(2) > g'(3).

So, f(2)f(2)>f(3)f(3)\frac{f'(2)}{f(2)} > \frac{f'(3)}{f(3)}. Thus, option (D) is false.

Both options (B) and (C) are correct.