Solveeit Logo

Question

Question: Let $f(x) = \left(sin\frac{kx}{10}\right)^4 + \left(cos\frac{kx}{10}\right)^4$, $k \in N$ If $\{f(x...

Let f(x)=(sinkx10)4+(coskx10)4f(x) = \left(sin\frac{kx}{10}\right)^4 + \left(cos\frac{kx}{10}\right)^4, kNk \in N

If {f(x):a<x<a+1}={f(x):xR}\{f(x):a<x<a+1\} = \{f(x):x \in R\} for any real number a then the minimum value of k is more than

A

12

B

13

C

14

D

15

Answer

D

Explanation

Solution

The given function is f(x)=(sinkx10)4+(coskx10)4f(x) = \left(\sin\frac{kx}{10}\right)^4 + \left(\cos\frac{kx}{10}\right)^4. We can simplify this expression: f(x)=(sin2kx10+cos2kx10)22sin2kx10cos2kx10f(x) = (\sin^2\frac{kx}{10} + \cos^2\frac{kx}{10})^2 - 2\sin^2\frac{kx}{10}\cos^2\frac{kx}{10} f(x)=112(2sinkx10coskx10)2f(x) = 1 - \frac{1}{2}\left(2\sin\frac{kx}{10}\cos\frac{kx}{10}\right)^2 f(x)=112(sin(2kx10))2f(x) = 1 - \frac{1}{2}\left(\sin\left(2 \cdot \frac{kx}{10}\right)\right)^2 f(x)=112sin2(kx5)f(x) = 1 - \frac{1}{2}\sin^2\left(\frac{kx}{5}\right)

Let θ=kx5\theta = \frac{kx}{5}. The function becomes f(x)=112sin2(θ)f(x) = 1 - \frac{1}{2}\sin^2(\theta). The range of sin2(θ)\sin^2(\theta) is [0,1][0, 1]. So, the range of 12sin2(θ)\frac{1}{2}\sin^2(\theta) is [0,12]\left[0, \frac{1}{2}\right]. Multiplying by -1, the range of 12sin2(θ)-\frac{1}{2}\sin^2(\theta) is [12,0]\left[-\frac{1}{2}, 0\right]. Adding 1, the range of f(x)f(x) is [112,10]=[12,1]\left[1 - \frac{1}{2}, 1 - 0\right] = \left[\frac{1}{2}, 1\right]. This is the range of f(x)f(x) for xRx \in R, i.e., {f(x):xR}=[12,1]\{f(x):x \in R\} = \left[\frac{1}{2}, 1\right].

The condition given is that {f(x):a<x<a+1}={f(x):xR}\{f(x):a<x<a+1\} = \{f(x):x \in R\} for any real number aa. This means that on any interval of length 1, the function f(x)f(x) must attain all values between 12\frac{1}{2} and 11.

Let's find the period of f(x)f(x). The term sin2(kx5)\sin^2\left(\frac{kx}{5}\right) determines the periodicity. The period of sin(Ax)\sin(Ax) is 2πA\frac{2\pi}{|A|}. The period of sin2(Ax)\sin^2(Ax) is πA\frac{\pi}{|A|}. Here A=k5A = \frac{k}{5}. So, the period of f(x)f(x) is T=πk/5=5πkT = \frac{\pi}{|k/5|} = \frac{5\pi}{k} (since kNk \in N, k>0k>0).

For a periodic function to cover its entire range on any interval of length LL, it is necessary that LTL \ge T. In this problem, the length of the interval is L=1L=1. Therefore, we must have 1T1 \ge T. 15πk1 \ge \frac{5\pi}{k} Since kNk \in N, kk must be positive, so we can multiply by kk without changing the inequality direction: k5πk \ge 5\pi

Now, we need to approximate the value of 5π5\pi. Using π3.14159\pi \approx 3.14159: 5π5×3.14159=15.707955\pi \approx 5 \times 3.14159 = 15.70795

So, k15.70795k \ge 15.70795. Since kk must be a natural number (kNk \in N), the minimum integer value of kk that satisfies this condition is k=16k=16.

The question asks for "the minimum value of k is more than". The minimum value of kk is 16. We need to find which of the given options (A) 12, (B) 13, (C) 14, (D) 15 is a value that 16 is greater than. In this case, 15 is the largest value among the options that 16 is greater than.