Solveeit Logo

Question

Question: Let \(f(x) = \left| \begin{matrix} x^{3}\sin x\cos x \\ 6 - 10 \\ 1p^{2}p^{3} \end{matrix} \right|\)...

Let f(x)=x3sinxcosx6101p2p3f(x) = \left| \begin{matrix} x^{3}\sin x\cos x \\ 6 - 10 \\ 1p^{2}p^{3} \end{matrix} \right| where p is a constant. Then

d3dx3[f(x)]\frac{d^{3}}{dx^{3}}\lbrack f(x)\rbrack at x=0x = 0 is

A

p

B

p + p2

C

p + p3

D

Independent of p

Answer

Independent of p

Explanation

Solution

Given f(x)=x3sinxcosx6101p2p3f(x) = \left| \begin{matrix} x^{3}\sin x\cos x \\ 6 - 10 \\ 1p^{2}p^{3} \end{matrix} \right|, 2nd and 3rd rows are constant, so only 1st row will take part in differentiation

\therefore d3dx3f(x)=d3dx3x3d3dx3sinxd3dx3cosx6101p2p3\frac{d^{3}}{dx^{3}}f(x) = \left| \begin{matrix} \frac{d^{3}}{dx^{3}}x^{3}\frac{d^{3}}{dx^{3}}\sin x\frac{d^{3}}{dx^{3}}\cos x \\ \begin{aligned} & \\ & 6 - 10 \end{aligned} \\ \begin{aligned} & \\ & 1p^{2}p^{3} \end{aligned} \end{matrix} \right|

We know that dndxnxn=n!,dndxnsinx=sin(x+nπ2)\frac{d^{n}}{dx^{n}}x^{n} = n!,\frac{d^{n}}{dx^{n}}\sin x = \sin(x + \frac{n\pi}{2})

and dndxncosx=cos(x+nπ2)\frac{d^{n}}{dx^{n}}\cos x = \cos(x + \frac{n\pi}{2})

Using these results,

d3dx3f(x)=3!sin(x+3π2)cos(x+3π2)6101p2p3\frac { d ^ { 3 } } { d x ^ { 3 } } f ( x ) = \left| \begin{array} { c c c } 3 ! & \sin \left( x + \frac { 3 \pi } { 2 } \right) & \cos \left( x + \frac { 3 \pi } { 2 } \right) \\ 6 & - 1 & 0 \\ 1 & p ^ { 2 } & p ^ { 3 } \end{array} \right|  d3dx3f(x)at x=0=6106101p2p3\left. \ \frac{d^{3}}{dx^{3}}f(x) \right|_{\text{at }x = 0} = \left| \begin{matrix} 6 - 10 \\ 6 - 10 \\ 1p^{2}p^{3} \end{matrix} \right| = 0 i.e., independent of p.