Question
Question: Let f(x) = \(\left\{ \begin{matrix} x^{2} & ifx \leq x_{0} \\ ax + b & ifx > x_{0} \end{matrix} \rig...
Let f(x) = {x2ax+bifx≤x0ifx>x0 The values of the coefficients a and b for which the function is continuous and has a derivative at x0, are
A
a = x0, b = –x0
B
a = 2x0, b = –x20
C
a = x20, b = –x0
D
a = x0, b = –x20
Answer
a = 2x0, b = –x20
Explanation
Solution
For f to be continuous everywhere, we must have x02= f(x0)
=limx→x0+f(x) = ax0 + b
Also, f has a derivative at x0 if f′(x0+) = f′(x0–)
Now, f′(x0+) = limh→0+ hf(x0+h)−f(x0)
= limh→0+ ha(x0+h)+b−x02
= limh→0+ (hax0+b−x02+a)= limh→0+a = a
[Qx02= ax0 + b]
and f′(x0–) = limh→0− hf(x0+h)−f(x0)
= limh→0− h(x0+h)2−x02
= limh→0− hx02+h2+2x0h−x02
= limh→0− (h + 2x0) = 2x0
That is, a = 2x0, and hence b = x02– ax0 = x02–2x02 = –x02