Solveeit Logo

Question

Question: Let f(x) = \(\left\{ \begin{matrix} x^{2} & ifx \leq x_{0} \\ ax + b & ifx > x_{0} \end{matrix} \rig...

Let f(x) = {x2ifxx0ax+bifx>x0 \left\{ \begin{matrix} x^{2} & ifx \leq x_{0} \\ ax + b & ifx > x_{0} \end{matrix} \right.\ The values of the coefficients a and b for which the function is continuous and has a derivative at x0, are

A

a = x0, b = –x0

B

a = 2x0, b = –x20

C

a = x20, b = –x0

D

a = x0, b = –x20

Answer

a = 2x0, b = –x20

Explanation

Solution

For f to be continuous everywhere, we must have x02x_{0}^{2}= f(x0)

=limxx0+\lim_{x \rightarrow {x_{0}}^{+}}f(x) = ax0 + b

Also, f has a derivative at x0 if f′(x0+) = f′(x0)

Now, f′(x0+) = limh0+\lim_{h \rightarrow 0^{+}} f(x0+h)f(x0)h\frac{f(x_{0} + h) - f(x_{0})}{h}

= limh0+\lim_{h \rightarrow 0^{+}} a(x0+h)+bx02h\frac{a(x_{0} + h) + b - x_{0}^{2}}{h}

= limh0+\lim_{h \rightarrow 0^{+}} (ax0+bx02h+a)\left( \frac{ax_{0} + b - x_{0}^{2}}{h} + a \right)= limh0+\lim_{h \rightarrow 0^{+}}a = a

[Qx02x_{0}^{2}= ax0 + b]

and f′(x0–) = limh0\lim_{h \rightarrow 0 -} f(x0+h)f(x0)h\frac{f(x_{0} + h) - f(x_{0})}{h}

= limh0\lim_{h \rightarrow 0 -} (x0+h)2x02h\frac{(x_{0} + h)^{2} - x_{0}^{2}}{h}

= limh0\lim_{h \rightarrow 0 -} x02+h2+2x0hx02h\frac{x_{0}^{2} + h^{2} + 2x_{0}h - x_{0}^{2}}{h}

= limh0\lim_{h \rightarrow 0 -} (h + 2x0) = 2x0

That is, a = 2x0, and hence b = x02x_{0}^{2}– ax0 = x02x_{0}^{2}–2x02x_{0}^{2} = –x02x_{0}^{2}