Solveeit Logo

Question

Question: Let \(f(x) = \left\{ \begin{matrix} \frac{1 - \sin x}{\pi - 2x}, & x \neq \frac{\pi}{2} \\ \lambda, ...

Let f(x)={1sinxπ2x,xπ2λ,x=π2 f(x) = \left\{ \begin{matrix} \frac{1 - \sin x}{\pi - 2x}, & x \neq \frac{\pi}{2} \\ \lambda, & x = \frac{\pi}{2} \end{matrix} \right.\ be a function differentiable at x=π/2,x = \pi/2,. Then \lambda equals

A

f(x)=2x+4sin2x;(x0)f(x) = \frac{2 - \sqrt{x + 4}}{\sin 2x};(x \neq 0)

B

x=0x = 0

C

f(0)f(0)

D

None of these

Answer

None of these

Explanation

Solution

Since f(x)f ( x ) is differentiable at x=cx = c therefore it is

continuous at x=cx = c. Hence, limxcf(x)=f(c)\lim _ { x \rightarrow c } f ( x ) = f ( c ).