Solveeit Logo

Question

Question: Let $f(x) = \int \frac{\sin x + \cos x}{e^{-x} + \sin x} dx$ and $f(0)=1$, then $f(x)$ is equal to:...

Let f(x)=sinx+cosxex+sinxdxf(x) = \int \frac{\sin x + \cos x}{e^{-x} + \sin x} dx and f(0)=1f(0)=1, then f(x)f(x) is equal to:

A

ln(ex+sinx)+1\ln(e^{-x}+\sin x)+1

B

x+ln(ex+sinx)+1x+\ln(e^{-x}+\sin x)+1

C

ln(1+exsinx)\ln(1+e^x \sin x)

D

x+ln(ex+sinx)+1x+\ln(e^{x}+\sin x)+1

Answer

x+ln(e^{-x}+sin x)+1

Explanation

Solution

To evaluate the integral f(x)=sinx+cosxex+sinxdxf(x) = \int \frac{\sin x + \cos x}{e^{-x} + \sin x} dx, we can manipulate the integrand.

The denominator is ex+sinxe^{-x} + \sin x. We can rewrite exe^{-x} as 1ex\frac{1}{e^x}. So, the denominator becomes 1ex+sinx=1+exsinxex\frac{1}{e^x} + \sin x = \frac{1 + e^x \sin x}{e^x}.

Substitute this back into the integral: f(x)=sinx+cosx1+exsinxexdxf(x) = \int \frac{\sin x + \cos x}{\frac{1 + e^x \sin x}{e^x}} dx f(x)=ex(sinx+cosx)1+exsinxdxf(x) = \int \frac{e^x (\sin x + \cos x)}{1 + e^x \sin x} dx

Now, this integral is in the form g(x)g(x)dx\int \frac{g'(x)}{g(x)} dx. Let g(x)=1+exsinxg(x) = 1 + e^x \sin x. To find g(x)g'(x), we differentiate g(x)g(x) with respect to xx: g(x)=ddx(1+exsinx)g'(x) = \frac{d}{dx}(1 + e^x \sin x) Using the product rule for exsinxe^x \sin x: ddx(uv)=uv+uv\frac{d}{dx}(uv) = u'v + uv'. Here, u=exu = e^x and v=sinxv = \sin x. So u=exu' = e^x and v=cosxv' = \cos x. g(x)=0+(exsinx+excosx)g'(x) = 0 + (e^x \sin x + e^x \cos x) g(x)=ex(sinx+cosx)g'(x) = e^x (\sin x + \cos x)

We can see that the numerator of our manipulated integrand is exactly g(x)g'(x). So, the integral becomes: f(x)=g(x)g(x)dx=lng(x)+Cf(x) = \int \frac{g'(x)}{g(x)} dx = \ln|g(x)| + C Substitute back g(x)=1+exsinxg(x) = 1 + e^x \sin x: f(x)=ln1+exsinx+Cf(x) = \ln|1 + e^x \sin x| + C

Now, we use the given condition f(0)=1f(0)=1 to find the value of CC. f(0)=ln1+e0sin0+Cf(0) = \ln|1 + e^0 \sin 0| + C Since e0=1e^0 = 1 and sin0=0\sin 0 = 0: f(0)=ln1+10+Cf(0) = \ln|1 + 1 \cdot 0| + C f(0)=ln1+Cf(0) = \ln|1| + C f(0)=0+Cf(0) = 0 + C Given f(0)=1f(0)=1, so C=1C=1.

Thus, the function f(x)f(x) is: f(x)=ln1+exsinx+1f(x) = \ln|1 + e^x \sin x| + 1

Now, let's compare this result with the given options. Notice that the options do not have absolute values. We should match the algebraic form. Let's look at Option 2: x+ln(ex+sinx)+1x+\ln(e^{-x}+\sin x)+1. Let's simplify the logarithmic term in Option 2: ln(ex+sinx)=ln(1ex+sinx)\ln(e^{-x}+\sin x) = \ln\left(\frac{1}{e^x} + \sin x\right) =ln(1+exsinxex)= \ln\left(\frac{1 + e^x \sin x}{e^x}\right) Using the logarithm property ln(AB)=lnAlnB\ln\left(\frac{A}{B}\right) = \ln A - \ln B: =ln(1+exsinx)ln(ex)= \ln(1 + e^x \sin x) - \ln(e^x) =ln(1+exsinx)x= \ln(1 + e^x \sin x) - x Substitute this back into Option 2: f(x)=x+(ln(1+exsinx)x)+1f(x) = x + (\ln(1 + e^x \sin x) - x) + 1 f(x)=ln(1+exsinx)+1f(x) = \ln(1 + e^x \sin x) + 1 This matches our derived function f(x)f(x), ignoring the absolute value sign which is common in multiple-choice questions when the domain is implicitly assumed to make the argument of logarithm positive.

The final answer is x+ln(ex+sinx)+1x+\ln(e^{-x}+\sin x)+1.