Solveeit Logo

Question

Question: Let f(x) = \(\left\{ \begin{array} { c c } 4 x - x ^ { 3 } + \ln \left( a ^ { 2 } - 3 a + 3 \right) ...

Let f(x) = {4xx3+ln(a23a+3),0x<3x18,x3\left\{ \begin{array} { c c } 4 x - x ^ { 3 } + \ln \left( a ^ { 2 } - 3 a + 3 \right) , & 0 \leq x < 3 \\ x - 18 , & x \geq 3 \end{array} \right.

Complete set of 'a such that f(x) has a local minima at x = 3, is

A

[-1, 2]

B

(-∞, 1) ∪ (2, ∞)

C

[1, 2]

D

) (-∞, -1) ∪ (2, ∞)

Answer

1,21, 2

Explanation

Solution

Clearly f(x) is decreasing just before x = 3 and increasing after x = 3. For x = 3 to be the point of local minima.

f(3) ≥ f(3 – 0)

⇒ −15 ≥ 12 – 27+ ln (12 - 3a + 3) ⇒ 0 < a2 – 3a + 3 < 1

⇒ 1 < a < 2