Question
Question: Let f(x) = \(\left\{ \begin{array} { c c } 4 x - x ^ { 3 } + \ln \left( a ^ { 2 } - 3 a + 3 \right) ...
Let f(x) = {4x−x3+ln(a2−3a+3),x−18,0≤x<3x≥3
Complete set of 'a such that f(x) has a local minima at x = 3, is
A
[-1, 2]
B
(-∞, 1) ∪ (2, ∞)
C
[1, 2]
D
) (-∞, -1) ∪ (2, ∞)
Answer
1,2
Explanation
Solution
Clearly f(x) is decreasing just before x = 3 and increasing after x = 3. For x = 3 to be the point of local minima.
f(3) ≥ f(3 – 0)
⇒ −15 ≥ 12 – 27+ ln (12 - 3a + 3) ⇒ 0 < a2 – 3a + 3 < 1
⇒ 1 < a < 2