Question
Question: Let f(x) = g(x) \(\frac{e^{1/x} - e^{- 1/x}}{e^{1/x} + e^{- 1/x}}\)and x ¹ 0 where g is a continuous...
Let f(x) = g(x) e1/x+e−1/xe1/x−e−1/xand x ¹ 0 where g is a continuous function. Then limx→0f(x) exists if
A
g(x) is any polynomial
B
g(x) = x + 4
C
g(x) = x2
D
g(x) = 2 + 3x + 4x2
Answer
g(x) = x2
Explanation
Solution
limx→0+e1/x+e−1/xe1/x−e−1/x = limx→0+1+e−2/x1−e−2/x= 1 and
limx→0−e1/x+e−1/xe1/x−e−1/x= limx→0−e2/x+1e2/x−1= –1. Hence
limx→0f(x) exists if g(x) = x or g(x) = x2. If g(x) = a (a ¹ 0), thenlimx→0+f(x) = a and limx→0−f(x) = –a. Thus limx→0f(x) doesn't exist in this case.