Solveeit Logo

Question

Question: Let f(x) = g(x) \(\frac{e^{1/x} - e^{- 1/x}}{e^{1/x} + e^{- 1/x}}\)and x ¹ 0 where g is a continuous...

Let f(x) = g(x) e1/xe1/xe1/x+e1/x\frac{e^{1/x} - e^{- 1/x}}{e^{1/x} + e^{- 1/x}}and x ¹ 0 where g is a continuous function. Then limx0\lim_{x \rightarrow 0}f(x) exists if

A

g(x) is any polynomial

B

g(x) = x + 4

C

g(x) = x2

D

g(x) = 2 + 3x + 4x2

Answer

g(x) = x2

Explanation

Solution

limx0+e1/xe1/xe1/x+e1/x\lim_{x \rightarrow 0^{+}}\frac{e^{1/x} - e^{- 1/x}}{e^{1/x} + e^{- 1/x}} = limx0+1e2/x1+e2/x\lim_{x \rightarrow 0^{+}}\frac{1 - e^{- 2/x}}{1 + e^{- 2/x}}= 1 and

limx0e1/xe1/xe1/x+e1/x\lim_{x \rightarrow 0^{-}}\frac{e^{1/x} - e^{- 1/x}}{e^{1/x} + e^{- 1/x}}= limx0e2/x1e2/x+1\lim_{x \rightarrow 0^{-}}\frac{e^{2/x} - 1}{e^{2/x} + 1}= –1. Hence

limx0f(x)\lim_{x \rightarrow 0}f(x) exists if g(x) = x or g(x) = x2. If g(x) = a (a ¹ 0), thenlimx0+f(x)\lim_{x \rightarrow 0 +}f(x) = a and limx0f(x)\lim_{x \rightarrow 0 -}f(x) = –a. Thus limx0f(x)\lim_{x \rightarrow 0}f(x) doesn't exist in this case.