Solveeit Logo

Question

Question: Let F(x) = f(x) g(x) h(x) for all real x where f(x), g(x) and h(x) are differentiable functions. At ...

Let F(x) = f(x) g(x) h(x) for all real x where f(x), g(x) and h(x) are differentiable functions. At some point

x0, F ' (x0) = 21 F (x0), f ' (x0) = 4 f (x0)

g ' (x0) = – 7 g(x0), h ' (x0) = k h' (x0), then k =

A

24

B

12

C

0

D

21

Answer

24

Explanation

Solution

F ' (x) = f ' (x) g (x) h (x) + f (x) g'(x) h(x) + f(x) g(x) h ' (x)

21 F(x0) = 4 f(x0) g(x0) h(x0) – 7f(x0)

g(x0) h(x0)+ f(x0) g(x0) kh(x0)

21 F(x0) = (k – 3) f(x0) g(x0) h(x0)

(Q F(x0) = f(x0) g(x0) h(x0))

21 = k – 3

k = 24