Solveeit Logo

Question

Question: Let $f(x) = \frac{x^4 - \lambda x^3 - 3x^2 + 3\lambda x}{x-\lambda}$. If range of f(x) is the set of...

Let f(x)=x4λx33x2+3λxxλf(x) = \frac{x^4 - \lambda x^3 - 3x^2 + 3\lambda x}{x-\lambda}. If range of f(x) is the set of intire real number then the true set in which λ\lambda lies is

A

[-2, 2]

B

[0, 4]

C

(1, 3)

D

None of them

Answer

[-2, 2]

Explanation

Solution

The given function is f(x)=x4λx33x2+3λxxλf(x) = \frac{x^4 - \lambda x^3 - 3x^2 + 3\lambda x}{x-\lambda}. The function is defined for xλx \neq \lambda.

We can factor the numerator: x4λx33x2+3λx=x3(xλ)3x(xλ)=(x33x)(xλ)x^4 - \lambda x^3 - 3x^2 + 3\lambda x = x^3(x - \lambda) - 3x(x - \lambda) = (x^3 - 3x)(x - \lambda).

So, for xλx \neq \lambda, we have f(x)=(x33x)(xλ)xλ=x33xf(x) = \frac{(x^3 - 3x)(x - \lambda)}{x - \lambda} = x^3 - 3x. Let g(x)=x33xg(x) = x^3 - 3x. Then f(x)=g(x)f(x) = g(x) for all xλx \neq \lambda.

The range of f(x)f(x) is the set of values g(x)g(x) takes for xR{λ}x \in \mathbb{R} \setminus \{\lambda\}. The function g(x)=x33xg(x) = x^3 - 3x is a cubic polynomial. The range of g(x)g(x) for xRx \in \mathbb{R} is R\mathbb{R}. The range of f(x)f(x) is the set {g(x)xR,xλ}\{g(x) \mid x \in \mathbb{R}, x \neq \lambda\}. This set is equal to the range of g(x)g(x) for xRx \in \mathbb{R}, which is R\mathbb{R}, minus the value g(λ)g(\lambda), if g(λ)g(\lambda) is only attained by g(x)g(x) at x=λx = \lambda. If g(λ)g(\lambda) is attained by g(x)g(x) at some value x0λx_0 \neq \lambda, then g(λ)g(\lambda) is in the range of f(x)f(x) because f(x0)=g(x0)=g(λ)f(x_0) = g(x_0) = g(\lambda) and x0λx_0 \neq \lambda.

The range of f(x)f(x) is the entire set of real numbers R\mathbb{R} if and only if the value g(λ)g(\lambda) is in the range of f(x)f(x). This happens if and only if there exists some x0λx_0 \neq \lambda such that f(x0)=g(λ)f(x_0) = g(\lambda). Since f(x0)=g(x0)f(x_0) = g(x_0) for x0λx_0 \neq \lambda, this condition becomes: there exists x0λx_0 \neq \lambda such that g(x0)=g(λ)g(x_0) = g(\lambda).

We need to find the values of λ\lambda such that the equation g(x)=g(λ)g(x) = g(\lambda) has at least one solution xλx \neq \lambda. x33x=λ33λx^3 - 3x = \lambda^3 - 3\lambda x3λ33x+3λ=0x^3 - \lambda^3 - 3x + 3\lambda = 0 (xλ)(x2+xλ+λ2)3(xλ)=0(x - \lambda)(x^2 + x\lambda + \lambda^2) - 3(x - \lambda) = 0 (xλ)(x2+xλ+λ23)=0(x - \lambda)(x^2 + x\lambda + \lambda^2 - 3) = 0 The solutions are x=λx = \lambda or x2+λx+λ23=0x^2 + \lambda x + \lambda^2 - 3 = 0.

The equation g(x)=g(λ)g(x) = g(\lambda) always has the solution x=λx = \lambda. For there to be a solution xλx \neq \lambda, the quadratic equation x2+λx+λ23=0x^2 + \lambda x + \lambda^2 - 3 = 0 must have at least one real root. Let h(x)=x2+λx+λ23h(x) = x^2 + \lambda x + \lambda^2 - 3. The discriminant of this quadratic is D=λ24(1)(λ23)=λ24λ2+12=3λ2+12D = \lambda^2 - 4(1)(\lambda^2 - 3) = \lambda^2 - 4\lambda^2 + 12 = -3\lambda^2 + 12. For the quadratic equation to have real roots, we must have D0D \ge 0. 3λ2+120-3\lambda^2 + 12 \ge 0 123λ212 \ge 3\lambda^2 4λ24 \ge \lambda^2 λ24\lambda^2 \le 4 2λ2-2 \le \lambda \le 2.

Therefore, the final answer is [2,2]\boxed{[-2, 2]}.