Solveeit Logo

Question

Question: Let f(x) =\(\frac{\alpha x}{x + 1}\), x ≠ 1. Then, for what value of α is f(f(x)) = x ?...

Let f(x) =αxx+1\frac{\alpha x}{x + 1}, x ≠ 1. Then, for what value of α is f(f(x))

= x ?

A

2\sqrt{2}

B

2\sqrt{2}

C

1

D

−1

Answer

−1

Explanation

Solution

f(x) = αxx+1\frac{\alpha x}{x + 1}, x ≠ −1

f(f(x)) = x ⇒ α(αxx+1)αxx+1+1\frac{\alpha\left( \frac{\alpha x}{x + 1} \right)}{\frac{\alpha x}{x + 1} + 1}= x

α2x(α+1)x+1\frac{\alpha^{2}x}{(\alpha + 1)x + 1}= x ⇒ (α + 1)x2 + (1 − α2) x = 0 ……(1)

⇒ α2 − α − 2 = 0

⇒ (α − 2) (α + 1) = 0 ⇒ α = 2, − 1

Putting x = 2 in (1)

α2 - 2α − 3 = 0

⇒ (α + 1) (α −3) = 0 ⇒ α = −1, 3

The common solution is α = −1

∴ (4) is the correct alternative