Solveeit Logo

Question

Question: Let f(x) = \(\frac{2\sqrt{2} - (\cos(x) + \sin(x))^{3}}{1 - \sin(2x)}\) then \(\underset{x \rightarr...

Let f(x) = 22(cos(x)+sin(x))31sin(2x)\frac{2\sqrt{2} - (\cos(x) + \sin(x))^{3}}{1 - \sin(2x)} then Limxπ4\underset{x \rightarrow \frac{\pi}{4}}{Lim}f(x) is equal to

A

12\frac{1}{\sqrt{2}}

B

2\sqrt{2}

C

1

D

32\frac{3}{\sqrt{2}}

Answer

32\frac{3}{\sqrt{2}}

Explanation

Solution

f(x) = 22(cosx+sinx)31sin2x\frac{2\sqrt{2} - (\cos x + \sin x)^{3}}{1 - \sin 2x} (0/0)

L'Hospital Rule

limxπ4\lim_{x \rightarrow \frac{\pi}{4}} f(x)

= limxπ4\lim_{x \rightarrow \frac{\pi}{4}}3(cosx+sinx)2(sinx+cosx)2cos2x\frac{3(\cos x + \sin x)^{2}( - \sin x + \cos x)}{- 2\cos 2x}

= limxπ4\lim_{x \rightarrow \frac{\pi}{4}} +3(cosx+sinx)2(cosxsinx)2(cosxsinx)(cosx+sinx)\frac{+ 3(\cos x + \sin x)^{2}(\cos x - \sin x)}{2(\cos x - \sin x)(\cos x + \sin x)}

= limxπ4\lim_{x \rightarrow \frac{\pi}{4}} 32\frac{3}{2} × (cos x + sin x)

= 32×22\frac{3}{2} \times \frac{2}{\sqrt{2}} = 32\frac{3}{\sqrt{2}}