Solveeit Logo

Question

Question: Let f(x) = \(\frac{1}{x^{2}}\), y(x) = 1/x on [a, b] 0 \< a \< b Let \(\frac{f(b) - f(a)}{g(b) - g(a...

Let f(x) = 1x2\frac{1}{x^{2}}, y(x) = 1/x on [a, b] 0 < a < b Let f(b)f(a)g(b)g(a)\frac{f(b) - f(a)}{g(b) - g(a)} = f(c)g(c)\frac{f'(c)}{g'(c)} for some a < c< b then c is

A

A.M. of a & b

B

G.M. of a & b

C

H.M. of a & b

D

None

Answer

H.M. of a & b

Explanation

Solution

f(b)f(a)g(b)g(a)=f(c)g(c)\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}

1/b21/a21/b1/a=2/c31/c2\frac{1/b^{2} - 1/a^{2}}{1/b - 1/a} = \frac{- 2/c^{3}}{- 1/c^{2}}̃ a2b2a2b2×abab=2c\frac{a^{2} - b^{2}}{a^{2}b^{2}} \times \frac{ab}{a - b} = \frac{2}{c}

̃ a+bab=2c\frac{a + b}{ab} = \frac{2}{c}̃ c=2aba+bc = \frac{2ab}{a + b}