Solveeit Logo

Question

Question: Let $f(x) = cos^{-1}(2x\sqrt{1-x^2})$ then $f'(\frac{\sqrt{3}}{2})$ equals...

Let f(x)=cos1(2x1x2)f(x) = cos^{-1}(2x\sqrt{1-x^2}) then f(32)f'(\frac{\sqrt{3}}{2}) equals

A

-4

B

4

C

14\frac{-1}{4}

D

14\frac{1}{4}

Answer

4

Explanation

Solution

To find f(32)f'(\frac{\sqrt{3}}{2}) for f(x)=cos1(2x1x2)f(x) = \cos^{-1}(2x\sqrt{1-x^2}), we can use two methods:

Method 1: Using Trigonometric Substitution

Let x=sinθx = \sin\theta. Since x=32x = \frac{\sqrt{3}}{2} is positive, we can choose θ[0,π2]\theta \in [0, \frac{\pi}{2}]. Then 1x2=1sin2θ=cos2θ=cosθ\sqrt{1-x^2} = \sqrt{1-\sin^2\theta} = \sqrt{\cos^2\theta} = \cos\theta (since cosθ0\cos\theta \ge 0 for θ[0,π2]\theta \in [0, \frac{\pi}{2}]).

Substitute x=sinθx = \sin\theta into f(x)f(x): f(x)=cos1(2sinθcosθ)f(x) = \cos^{-1}(2\sin\theta\cos\theta) f(x)=cos1(sin(2θ))f(x) = \cos^{-1}(\sin(2\theta))

Now, use the identity sinA=cos(π2A)\sin A = \cos(\frac{\pi}{2} - A): f(x)=cos1(cos(π22θ))f(x) = \cos^{-1}(\cos(\frac{\pi}{2} - 2\theta))

For x=32x = \frac{\sqrt{3}}{2}, we have sinθ=32\sin\theta = \frac{\sqrt{3}}{2}, which implies θ=π3\theta = \frac{\pi}{3}. Then 2θ=2π32\theta = \frac{2\pi}{3}. So, π22θ=π22π3=3π4π6=π6\frac{\pi}{2} - 2\theta = \frac{\pi}{2} - \frac{2\pi}{3} = \frac{3\pi - 4\pi}{6} = -\frac{\pi}{6}.

Now, we have f(x)=cos1(cos(π6))f(x) = \cos^{-1}(\cos(-\frac{\pi}{6})). The principal value branch of cos1(y)\cos^{-1}(y) is [0,π][0, \pi]. Since π6-\frac{\pi}{6} is not in [0,π][0, \pi], we use the property cos1(cosA)=A\cos^{-1}(\cos A) = -A if A[π,0]A \in [-\pi, 0]. Here A=π6A = -\frac{\pi}{6}, which is in [π,0][-\pi, 0]. So, f(x)=(π6)=π6f(x) = -(-\frac{\pi}{6}) = \frac{\pi}{6}. This is the value of the function at x=32x=\frac{\sqrt{3}}{2}, not the derivative.

To find the derivative, we need the functional form of f(x)f(x) for the relevant range of xx. For x=32x = \frac{\sqrt{3}}{2}, θ=π3\theta = \frac{\pi}{3}. The angle π22θ=π6\frac{\pi}{2} - 2\theta = -\frac{\pi}{6} falls in the range [π2,0)[-\frac{\pi}{2}, 0). For A[π2,0)A \in [-\frac{\pi}{2}, 0), cos1(cosA)=A\cos^{-1}(\cos A) = -A. So, f(x)=(π22θ)=2θπ2f(x) = -(\frac{\pi}{2} - 2\theta) = 2\theta - \frac{\pi}{2}. Substitute back θ=sin1x\theta = \sin^{-1}x: f(x)=2sin1xπ2f(x) = 2\sin^{-1}x - \frac{\pi}{2}.

Now, differentiate f(x)f(x) with respect to xx: f(x)=ddx(2sin1xπ2)f'(x) = \frac{d}{dx}(2\sin^{-1}x - \frac{\pi}{2}) f(x)=211x20f'(x) = 2 \cdot \frac{1}{\sqrt{1-x^2}} - 0 f(x)=21x2f'(x) = \frac{2}{\sqrt{1-x^2}}

Finally, substitute x=32x = \frac{\sqrt{3}}{2}: f(32)=21(32)2=2134=214=212=4f'(\frac{\sqrt{3}}{2}) = \frac{2}{\sqrt{1-(\frac{\sqrt{3}}{2})^2}} = \frac{2}{\sqrt{1-\frac{3}{4}}} = \frac{2}{\sqrt{\frac{1}{4}}} = \frac{2}{\frac{1}{2}} = 4.

Method 2: Direct Differentiation using Chain Rule

Let f(x)=cos1(2x1x2)f(x) = \cos^{-1}(2x\sqrt{1-x^2}). Using the chain rule, ddxcos1(u)=11u2dudx\frac{d}{dx}\cos^{-1}(u) = \frac{-1}{\sqrt{1-u^2}}\frac{du}{dx}. Here, u=2x1x2u = 2x\sqrt{1-x^2}.

First, find dudx\frac{du}{dx} using the product rule: u=2x(1x2)1/2u = 2x(1-x^2)^{1/2} dudx=2[(1)(1x2)1/2+x12(1x2)1/2(2x)]\frac{du}{dx} = 2 \left[ (1)\cdot(1-x^2)^{1/2} + x \cdot \frac{1}{2}(1-x^2)^{-1/2}(-2x) \right] dudx=2[1x2x21x2]\frac{du}{dx} = 2 \left[ \sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}} \right] dudx=2[(1x2)x21x2]=2(12x2)1x2\frac{du}{dx} = 2 \left[ \frac{(1-x^2) - x^2}{\sqrt{1-x^2}} \right] = \frac{2(1-2x^2)}{\sqrt{1-x^2}}.

Now, evaluate dudx\frac{du}{dx} at x=32x = \frac{\sqrt{3}}{2}: dudxx=32=2(12(32)2)1(32)2=2(1234)134=2(132)14=2(12)12=112=2\frac{du}{dx} \Big|_{x=\frac{\sqrt{3}}{2}} = \frac{2(1-2(\frac{\sqrt{3}}{2})^2)}{\sqrt{1-(\frac{\sqrt{3}}{2})^2}} = \frac{2(1-2\cdot\frac{3}{4})}{\sqrt{1-\frac{3}{4}}} = \frac{2(1-\frac{3}{2})}{\sqrt{\frac{1}{4}}} = \frac{2(-\frac{1}{2})}{\frac{1}{2}} = \frac{-1}{\frac{1}{2}} = -2.

Next, evaluate uu at x=32x = \frac{\sqrt{3}}{2}: u=2(32)1(32)2=3134=314=312=32u = 2(\frac{\sqrt{3}}{2})\sqrt{1-(\frac{\sqrt{3}}{2})^2} = \sqrt{3}\sqrt{1-\frac{3}{4}} = \sqrt{3}\sqrt{\frac{1}{4}} = \sqrt{3} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2}.

Finally, evaluate 1u2\sqrt{1-u^2} at x=32x = \frac{\sqrt{3}}{2} (where u=32u = \frac{\sqrt{3}}{2}): 1u2=1(32)2=134=14=12\sqrt{1-u^2} = \sqrt{1-(\frac{\sqrt{3}}{2})^2} = \sqrt{1-\frac{3}{4}} = \sqrt{\frac{1}{4}} = \frac{1}{2}.

Now, substitute these values into the derivative formula f(x)=11u2dudxf'(x) = \frac{-1}{\sqrt{1-u^2}} \cdot \frac{du}{dx}: f(32)=112(2)=(2)(2)=4f'(\frac{\sqrt{3}}{2}) = \frac{-1}{\frac{1}{2}} \cdot (-2) = (-2) \cdot (-2) = 4.

Both methods yield the same result.