Solveeit Logo

Question

Question: Let f(x) be positive, continuous and differentiable on the interval (a, b) and \(\lim _ { \mathrm {...

Let f(x) be positive, continuous and differentiable on the interval (a, b) and limxa+\lim _ { \mathrm { x } \rightarrow \mathrm { a } ^ { + } } f(x) = 1, limxb\lim _ { \mathrm { x } \rightarrow \mathrm { b } ^ { - } } f(x) = 31/4.

If f ¢(x) ³ f 3(x) + then the greatest value of b – a is -

A

1

B

31/4

C

(31/4 – 1)

D

π4\frac { \pi } { 4 }f

Answer

π4\frac { \pi } { 4 }f

Explanation

Solution

f ¢ (x) ³ f 3 (x) + Ž ³ 1

Integrating on the interval (a, b), we get

dx ³

Ž 12\frac { 1 } { 2 } tan–1 ³ b – a

Ž b – a £ 12\frac { 1 } { 2 } = π24\frac { \pi } { 24 }