Solveeit Logo

Question

Question: Let \( f(x) \) be defined as the definite integral from 0 to \( x \) of the natural logarithm of \(...

Let f(x)f(x) be defined as the definite integral from 0 to xx of the natural logarithm of 1+t21 + t^2, divided by 1+t41 + t^4, with respect to tt. Now, define another function g(x)g(x) as the value of f(x)f(x) divided by xx, for all xx not equal to 0. At x=0x = 0, define g(0)g(0) to be the limit of g(x)g(x) as xx approaches 0. Is the function g(x)g(x) differentiable at x=0x = 0?

Answer

Yes

Explanation

Solution

To determine if the function g(x)g(x) is differentiable at x=0x=0, we need to check if the limit g(0)=limh0g(0+h)g(0)hg'(0) = \lim_{h \to 0} \frac{g(0+h) - g(0)}{h} exists and is finite.

Step 1: Calculate g(0)g(0)

The function g(x)g(x) is defined as g(x)=f(x)xg(x) = \frac{f(x)}{x} for x0x \neq 0, and g(0)=limx0g(x)g(0) = \lim_{x \to 0} g(x). We have f(x)=0xln(1+t2)1+t4dtf(x) = \int_0^x \frac{\ln(1+t^2)}{1+t^4} dt.

First, evaluate f(0)f(0): f(0)=00ln(1+t2)1+t4dt=0f(0) = \int_0^0 \frac{\ln(1+t^2)}{1+t^4} dt = 0.

Now, calculate g(0)g(0): g(0)=limx0f(x)xg(0) = \lim_{x \to 0} \frac{f(x)}{x}. This is an indeterminate form 00\frac{0}{0} since f(0)=0f(0)=0. We can use L'Hopital's Rule. By the Fundamental Theorem of Calculus, f(x)=ddx0xln(1+t2)1+t4dt=ln(1+x2)1+x4f'(x) = \frac{d}{dx} \int_0^x \frac{\ln(1+t^2)}{1+t^4} dt = \frac{\ln(1+x^2)}{1+x^4}. Applying L'Hopital's Rule: g(0)=limx0f(x)1=limx0ln(1+x2)1+x4=ln(1+02)1+04=ln(1)1=01=0g(0) = \lim_{x \to 0} \frac{f'(x)}{1} = \lim_{x \to 0} \frac{\ln(1+x^2)}{1+x^4} = \frac{\ln(1+0^2)}{1+0^4} = \frac{\ln(1)}{1} = \frac{0}{1} = 0. So, g(0)=0g(0) = 0.

Step 2: Calculate g(0)g'(0)

The derivative g(0)g'(0) is defined as: g(0)=limh0g(h)g(0)hg'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h}. Substitute g(0)=0g(0) = 0 and g(h)=f(h)hg(h) = \frac{f(h)}{h} for h0h \neq 0: g(0)=limh0f(h)h0h=limh0f(h)h2g'(0) = \lim_{h \to 0} \frac{\frac{f(h)}{h} - 0}{h} = \lim_{h \to 0} \frac{f(h)}{h^2}. This is again an indeterminate form 00\frac{0}{0} since f(0)=0f(0)=0. We apply L'Hopital's Rule. g(0)=limh0f(h)2hg'(0) = \lim_{h \to 0} \frac{f'(h)}{2h}. Substitute f(h)=ln(1+h2)1+h4f'(h) = \frac{\ln(1+h^2)}{1+h^4}: g(0)=limh0ln(1+h2)1+h42h=limh0ln(1+h2)2h(1+h4)g'(0) = \lim_{h \to 0} \frac{\frac{\ln(1+h^2)}{1+h^4}}{2h} = \lim_{h \to 0} \frac{\ln(1+h^2)}{2h(1+h^4)}. This is still an indeterminate form 00\frac{0}{0} since ln(1+02)=0\ln(1+0^2) = 0 and 2(0)(1+04)=02(0)(1+0^4) = 0. We apply L'Hopital's Rule again. Let N(h)=ln(1+h2)N(h) = \ln(1+h^2) and D(h)=2h(1+h4)=2h+2h5D(h) = 2h(1+h^4) = 2h+2h^5. Calculate their derivatives: N(h)=ddh(ln(1+h2))=11+h22h=2h1+h2N'(h) = \frac{d}{dh}(\ln(1+h^2)) = \frac{1}{1+h^2} \cdot 2h = \frac{2h}{1+h^2}. D(h)=ddh(2h+2h5)=2+10h4D'(h) = \frac{d}{dh}(2h+2h^5) = 2+10h^4. Applying L'Hopital's Rule for the second time: g(0)=limh0N(h)D(h)=limh02h1+h22+10h4g'(0) = \lim_{h \to 0} \frac{N'(h)}{D'(h)} = \lim_{h \to 0} \frac{\frac{2h}{1+h^2}}{2+10h^4}. Substitute h=0h=0: g(0)=2(0)1+022+10(0)4=02=0g'(0) = \frac{\frac{2(0)}{1+0^2}}{2+10(0)^4} = \frac{0}{2} = 0.

Since the limit g(0)g'(0) exists and is finite (it is 0), the function g(x)g(x) is differentiable at x=0x=0.

Alternative method for limh0ln(1+h2)2h(1+h4)\lim_{h \to 0} \frac{\ln(1+h^2)}{2h(1+h^4)} using standard limits:

We know that limx0ln(1+x)x=1\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1. Rewrite the limit: limh0ln(1+h2)2h(1+h4)=limh0(ln(1+h2)h2h22h(1+h4))\lim_{h \to 0} \frac{\ln(1+h^2)}{2h(1+h^4)} = \lim_{h \to 0} \left( \frac{\ln(1+h^2)}{h^2} \cdot \frac{h^2}{2h(1+h^4)} \right) =limh0(ln(1+h2)h2h2(1+h4))= \lim_{h \to 0} \left( \frac{\ln(1+h^2)}{h^2} \cdot \frac{h}{2(1+h^4)} \right). As h0h \to 0: limh0ln(1+h2)h2=1\lim_{h \to 0} \frac{\ln(1+h^2)}{h^2} = 1 (by substituting x=h2x=h^2). limh0h2(1+h4)=02(1+0)=0\lim_{h \to 0} \frac{h}{2(1+h^4)} = \frac{0}{2(1+0)} = 0. Therefore, g(0)=10=0g'(0) = 1 \cdot 0 = 0.

Both methods confirm that g(0)=0g'(0)=0, which is a finite value.

The function g(x)g(x) is differentiable at x=0x=0.