Solveeit Logo

Question

Question: Let f(x) be defined as follows f(x) = \(\lim_{n \rightarrow \infty}\left( \frac{n^{2} - n + 1}{n^{2...

Let f(x) be defined as follows

f(x) = limn(n2n+1n2n1)n(n1)=\lim_{n \rightarrow \infty}\left( \frac{n^{2} - n + 1}{n^{2} - n - 1} \right)^{n(n - 1)} =

If f(x) is continuous at x = 0, then (a, b) =

A

e2e^{2}

B

e1e^{- 1}

C

(e, e)

D

(e–1, e–1)

Answer

e1e^{- 1}

Explanation

Solution

We apply check for continuity at x = 0

LHL = limx0\lim _ { x \rightarrow 0 ^ { - } }f(x) = (0 – h) =

(cos h + sin h)–cosec h (1 form)

= exp { (cos h + sin h – 1) × – cosec h}

= exp {limh0(2sin2 h2+2sin h2cos h2)×12sin h2cos h2}\left\{ \lim _ { \mathrm { h } \rightarrow 0 } \left( - 2 \sin ^ { 2 } \frac { \mathrm {~h} } { 2 } + 2 \sin \frac { \mathrm {~h} } { 2 } \cos \frac { \mathrm {~h} } { 2 } \right) \times \frac { - 1 } { 2 \sin \frac { \mathrm {~h} } { 2 } \cos \frac { \mathrm {~h} } { 2 } } \right\}

= exp= e–1

RHL = limx0+\lim _ { x \rightarrow 0 ^ { + } } f(x) = limh0\lim _ { h \rightarrow 0 } f(0 + h)

= e1/h+e2/h+e3/hae2/h+be3/h\frac { \mathrm { e } ^ { 1 / \mathrm { h } } + \mathrm { e } ^ { 2 / \mathrm { h } } + \mathrm { e } ^ { 3 / \mathrm { h } } } { \mathrm { ae } ^ { 2 / \mathrm { h } } + \mathrm { be } ^ { 3 / \mathrm { h } } }

=

∴ For continuity at x = 0,

e–1 = a = b–1 ⇒ a = 1e\frac { 1 } { \mathrm { e } } , b = e.