Solveeit Logo

Question

Question: Let $f(x)$ be a real polynomial of least degree which has local minimum at $x=1$ and local maximum a...

Let f(x)f(x) be a real polynomial of least degree which has local minimum at x=1x=1 and local maximum at x=13x=-\frac{1}{3} and f(2)=0,f(3)=13f(2)=0, f(3)=13, then value of f(6)f(6) is _______.

Answer

172

Explanation

Solution

To find the polynomial f(x)f(x), we use the given information about its local extrema and function values.

  1. Determine the degree of the polynomial:
    A polynomial has local extrema where its derivative f(x)=0f'(x)=0. We are given that f(x)f(x) has a local minimum at x=1x=1 and a local maximum at x=13x=-\frac{1}{3}. This means f(1)=0f'(1)=0 and f(13)=0f'\left(-\frac{1}{3}\right)=0.
    Since f(x)f'(x) has two distinct roots, x=1x=1 and x=13x=-\frac{1}{3}, the least degree of f(x)f'(x) must be 2.
    If f(x)f'(x) is a quadratic polynomial, then f(x)f(x) must be a cubic polynomial. This is the polynomial of least degree satisfying the conditions.

  2. Formulate f(x)f'(x):
    Since x=1x=1 and x=13x=-\frac{1}{3} are roots of f(x)f'(x), we can write f(x)f'(x) in the form:
    f(x)=A(x1)(x+13)f'(x) = A(x-1)\left(x+\frac{1}{3}\right)
    where AA is a constant.
    Expand f(x)f'(x):
    f(x)=A(x2+13xx13)f'(x) = A\left(x^2 + \frac{1}{3}x - x - \frac{1}{3}\right)
    f(x)=A(x223x13)f'(x) = A\left(x^2 - \frac{2}{3}x - \frac{1}{3}\right)

  3. Integrate f(x)f'(x) to find f(x)f(x):
    Integrate f(x)f'(x) with respect to xx:
    f(x)=A(x223x13)dxf(x) = \int A\left(x^2 - \frac{2}{3}x - \frac{1}{3}\right) dx
    f(x)=A(x3323x2213x)+Cf(x) = A\left(\frac{x^3}{3} - \frac{2}{3}\cdot\frac{x^2}{2} - \frac{1}{3}x\right) + C
    f(x)=A(x33x23x3)+Cf(x) = A\left(\frac{x^3}{3} - \frac{x^2}{3} - \frac{x}{3}\right) + C
    We can factor out A3\frac{A}{3}:
    f(x)=A3(x3x2x)+Cf(x) = \frac{A}{3}(x^3 - x^2 - x) + C

  4. Use the given conditions to find constants A and C:
    We are given f(2)=0f(2)=0 and f(3)=13f(3)=13.
    Using f(2)=0f(2)=0:
    A3(23222)+C=0\frac{A}{3}(2^3 - 2^2 - 2) + C = 0
    A3(842)+C=0\frac{A}{3}(8 - 4 - 2) + C = 0
    A3(2)+C=0\frac{A}{3}(2) + C = 0
    2A3+C=0(1)\frac{2A}{3} + C = 0 \quad (1)

    Using f(3)=13f(3)=13:
    A3(33323)+C=13\frac{A}{3}(3^3 - 3^2 - 3) + C = 13
    A3(2793)+C=13\frac{A}{3}(27 - 9 - 3) + C = 13
    A3(15)+C=13\frac{A}{3}(15) + C = 13
    5A+C=13(2)5A + C = 13 \quad (2)

    Now, solve the system of equations (1) and (2).
    From (1), C=2A3C = -\frac{2A}{3}.
    Substitute this into (2):
    5A2A3=135A - \frac{2A}{3} = 13
    Multiply by 3 to clear the denominator:
    15A2A=3915A - 2A = 39
    13A=3913A = 39
    A=3A = 3

    Now substitute A=3A=3 back into the expression for CC:
    C=2(3)3=2C = -\frac{2(3)}{3} = -2

  5. Write the complete polynomial f(x)f(x):
    Substitute A=3A=3 and C=2C=-2 into the expression for f(x)f(x):
    f(x)=33(x3x2x)2f(x) = \frac{3}{3}(x^3 - x^2 - x) - 2
    f(x)=x3x2x2f(x) = x^3 - x^2 - x - 2

  6. Verify local extrema (optional but good practice):
    f(x)=3x22x1=(3x+1)(x1)f'(x) = 3x^2 - 2x - 1 = (3x+1)(x-1). Roots are x=1x=1 and x=13x=-\frac{1}{3}.
    f(x)=6x2f''(x) = 6x - 2.
    f(1)=6(1)2=4>0f''(1) = 6(1) - 2 = 4 > 0, so x=1x=1 is a local minimum.
    f(13)=6(13)2=22=4<0f''\left(-\frac{1}{3}\right) = 6\left(-\frac{1}{3}\right) - 2 = -2 - 2 = -4 < 0, so x=13x=-\frac{1}{3} is a local maximum.
    The polynomial satisfies all conditions.

  7. Calculate f(6)f(6):
    Substitute x=6x=6 into f(x)f(x):
    f(6)=(6)3(6)2(6)2f(6) = (6)^3 - (6)^2 - (6) - 2
    f(6)=2163662f(6) = 216 - 36 - 6 - 2
    f(6)=18062f(6) = 180 - 6 - 2
    f(6)=1742f(6) = 174 - 2
    f(6)=172f(6) = 172