Question
Question: Let f(x) be a quadratic expression which is positive for all real x. If g(x) = f(x) + f ′(x) + f ′′(...
Let f(x) be a quadratic expression which is positive for all real x. If g(x) = f(x) + f ′(x) + f ′′(x), then for any real x –
A
g(x) > 0
B
g(x) ≥ 0
C
g(x) ≤ 0
D
g(x) < 0
Answer
g(x) > 0
Explanation
Solution
Let f(x) = ax2 + bx + c > 0
⇒ a > 0, b2 – 4ac < 0
g(x) = (ax2 + bx + c) + (2ax + b) + 2a
= ax2 + (2a + b) x + 2a + b + c
Now a > 0
D = (2a + b)2 – 4a (2a + b + c)
= b2 – 4ac ; D < 0 ⇒ g(x) > 0