Solveeit Logo

Question

Question: Let f(x) be a quadratic expression which is positive for all real x. If g(x) = f(x) + f ′(x) + f ′′(...

Let f(x) be a quadratic expression which is positive for all real x. If g(x) = f(x) + f ′(x) + f ′′(x), then for any real x –

A

g(x) > 0

B

g(x) ≥ 0

C

g(x) ≤ 0

D

g(x) < 0

Answer

g(x) > 0

Explanation

Solution

Let f(x) = ax2 + bx + c > 0

⇒ a > 0, b2 – 4ac < 0

g(x) = (ax2 + bx + c) + (2ax + b) + 2a

= ax2 + (2a + b) x + 2a + b + c

Now a > 0

D = (2a + b)2 – 4a (2a + b + c)

= b2 – 4ac ; D < 0 ⇒ g(x) > 0