Solveeit Logo

Question

Question: Let f(x) be a differentiable function satisfying $x(f(x)+1) = x^2 + \frac{x}{e} + \int_{0}^{x^2} f(\...

Let f(x) be a differentiable function satisfying x(f(x)+1)=x2+xe+0x2f(tx)dtxR0x(f(x)+1) = x^2 + \frac{x}{e} + \int_{0}^{x^2} f(\frac{t}{x}) dt \forall x \in R_0.

Let f(1)=1f'(1) = 1. If curves y=f(x)y = f(x), y=lnx2y = \ln x^2 intersects at (xn,yn)(x_n,y_n) for some n=1,2,3,4,...n = 1,2,3,4,... where y1<y2<y3<y4,...y_1 < y_2 < y_3 < y_4,..., then value of [y1]+[y2]+n[y_1] + [y_2] + n is ([.] denotes greatest integer function)

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

We are given that for all non‐zero real numbers x

x(f(x)+1)=x2+xe+0x2f(tx)dt.x(f(x)+1)= x^2+\frac{x}{e}+\int_{0}^{x^2} f(\frac{t}{x})\,dt.

Step 1. Simplify the Integral

Let

u=txt=xu,dt=xdu.u=\frac{t}{x} \quad \Rightarrow \quad t=xu, \quad dt=x\,du.

When t=0t=0, u=0u=0 and when t=x2t=x^2, u=xu=x. Hence,

0x2f(tx)dt=0xf(u)xdu=x0xf(u)du.\int_{0}^{x^2} f(\frac{t}{x})\,dt = \int_{0}^{x} f(u)\,x\,du = x\int_0^x f(u)\,du.

Thus the equation becomes (for x0x\ne 0 ):

x(f(x)+1)=x2+xe+x0xf(u)du.x(f(x)+1)= x^2+\frac{x}{e}+x\int_0^x f(u)\,du.

Divide by xx:

f(x)+1=x+1e+0xf(u)du.f(x)+1=x+\frac{1}{e}+\int_0^x f(u)\,du.

Step 2. Differentiate Both Sides

Differentiate with respect to xx:

  • LHS derivative: f(x)f'(x).
  • RHS derivative: ddx[x+1e]=1\frac{d}{dx}[x+\tfrac{1}{e}]=1 and ddx0xf(u)du=f(x)\frac{d}{dx}\int_0^x f(u)\,du = f(x) by the Fundamental Theorem of Calculus.

Thus,

f(x)=1+f(x).f'(x)=1+f(x).

Step 3. Solve the Differential Equation

This is a first–order linear ODE. Its integrating factor is exe^{-x}. Multiplying:

exf(x)exf(x)=exddx(exf(x))=ex.e^{-x} f'(x) - e^{-x} f(x) = e^{-x} \quad \Longrightarrow \quad \frac{d}{dx}(e^{-x}f(x))=e^{-x}.

Integrate both sides:

exf(x)=ex+Cf(x)=1+Cex.e^{-x}f(x)= -e^{-x}+C \quad \Longrightarrow \quad f(x)= -1+Ce^{x}.

Step 4. Use Condition f(1)=1f'(1)=1 to Determine CC

Differentiate f(x)=1+Cexf(x)= -1+Ce^x to get

f(x)=Cex.f'(x)= Ce^x.

At x=1x=1:

f(1)=Ce=1C=1e.f'(1)= Ce=1 \quad \Longrightarrow \quad C=\frac{1}{e}.

Thus,

f(x)=1+1eex=ex11.f(x)= -1+\frac{1}{e}e^x = e^{x-1}-1.

Step 5. Find the Intersection with y=lnx2y=\ln x^2

We need to solve

f(x)=lnx2.f(x)=\ln x^2.

That is,

ex11=2lnx.e^{x-1}-1=2\ln|x|.

Notice that, because lnx2=2lnx\ln x^2=2\ln|x| is defined for x0 x\neq 0, intersections can occur for positive and negative xx. A brief analysis shows:

  1. For x>0x>0:

    • At x=1x=1: f(1)=e01=0,ln12=0.f(1)= e^{0}-1=0,\quad \ln1^2=0. So one intersection is (1,0)(1,0).
    • There is another intersection for some x(1.5,2)x \in (1.5, 2) where numerically one finds f(x)1.12f(x)\approx 1.12 (since e1.75111.12e^{1.75-1}-1\approx1.12 and 2ln1.751.122\ln1.75\approx1.12).
  2. For x<0x<0:
    Let u=xu=|x| (with u>0u>0). Then

    f(u)=eu11andln((u)2)=2lnu.f(-u)= e^{-u-1}-1 \quad \text{and} \quad \ln((-u)^2)=2\ln u.

    A numerical check shows there is a solution for some u(0,1)u\in(0,1) approximately yielding f(u)0.81f(-u)\approx -0.81.

Thus, there are three intersections:

  • Intersection 1 (with lowest y–value): y10.81y_1\approx -0.81 (at some x<0x<0).
  • Intersection 2: y2=0y_2=0 (at x=1x=1).
  • Intersection 3: y31.12y_3\approx 1.12 (at x1.75x\approx1.75).

Let the total number of intersection points be n=3n = 3.

Step 6. Compute the Required Expression

We are to find:

[y1]+[y2]+n,[y_1] + [y_2] + n,

where [][\,\cdot\,] is the greatest integer function.

  • y10.81y_1\approx -0.81 so [y1]=1[y_1] = -1.
  • y2=0y_2=0 so [y2]=0[y_2] = 0.
  • n=3n=3.

Thus,

[y1]+[y2]+n=(1)+0+3=2.[y_1]+[y_2]+n = (-1) + 0 + 3 = 2.