Solveeit Logo

Question

Question: Let f(x) be a differentiable function satisfying $f'(x) \leq 2 - f(x)$, $\forall x \in R$, f(0) = 0....

Let f(x) be a differentiable function satisfying f(x)2f(x)f'(x) \leq 2 - f(x), xR\forall x \in R, f(0) = 0. If the maximum value of f(2) is M, then [M] is (where [.] denotes greatest integer function)

Answer

1

Explanation

Solution

Solution Explanation:
We are given

f(x)2f(x),f(0)=0.f'(x) \le 2 - f(x), \quad f(0)=0.

Consider the equality case:

g(x)=2g(x),g(0)=0.g'(x) = 2 - g(x), \quad g(0)=0.

This is a linear differential equation. Rearranging,

g(x)+g(x)=2.g'(x) + g(x) = 2.

The integrating factor is exe^x. Multiplying through by exe^x,

ddx[exg(x)]=2ex.\frac{d}{dx}[e^x g(x)] = 2e^x.

Integrate from 0 to xx:

exg(x)e0g(0)=2(ex1).e^x g(x) - e^0 g(0) = 2(e^x - 1).

Since g(0)=0g(0)=0,

exg(x)=2(ex1)g(x)=2(11ex)=22ex.e^x g(x)=2(e^x-1) \quad \Rightarrow \quad g(x) = 2\left(1-\frac{1}{e^x}\right)=2-2e^{-x}.

Since f(x)2f(x)f'(x) \leq 2-f(x), by the comparison principle, for all xx,

f(x)g(x)=22ex.f(x) \leq g(x)=2-2e^{-x}.

Thus, the maximum possible f(2)f(2) is

f(2)22e2.f(2)\leq 2-2e^{-2}.

Evaluating, M=22e2M=2-2e^{-2}. Note that numerically, e20.1353e^{-2}\approx0.1353 so M20.2706=1.7294M\approx2-0.2706=1.7294. The greatest integer function [M][M] is therefore

[M]=1.[M]=1.