Solveeit Logo

Question

Question: Let $F(x)$ be a cubic polynomial defined by $F(x) = \frac{x^3}{3} + (a-3)x^2 + x - 13$, then the num...

Let F(x)F(x) be a cubic polynomial defined by F(x)=x33+(a3)x2+x13F(x) = \frac{x^3}{3} + (a-3)x^2 + x - 13, then the number of all possible integral values of aa in the interval [1,100][1, 100] for which F(x)F(x) has point of local minimum at (α,β)(\alpha, \beta), where α<0\alpha < 0, is equal to

Answer

96

Explanation

Solution

  1. Find derivatives: F(x)=x2+2(a3)x+1F'(x) = x^2 + 2(a-3)x + 1 F(x)=2x+2(a3)F''(x) = 2x + 2(a-3)

  2. Find critical points: Set F(x)=0    x2+2(a3)x+1=0F'(x) = 0 \implies x^2 + 2(a-3)x + 1 = 0. The roots are x=(a3)±(a3)21x = -(a-3) \pm \sqrt{(a-3)^2 - 1}. For distinct real roots (required for local extrema), the discriminant must be positive: (a3)21>0    a3>1(a-3)^2 - 1 > 0 \implies |a-3| > 1, so a>4a > 4 or a<2a < 2.

  3. Identify local minimum: Using the second derivative test, a local minimum occurs where F(x)>0F''(x) > 0. The roots are x1=(a3)(a3)21x_1 = -(a-3) - \sqrt{(a-3)^2 - 1} and x2=(a3)+(a3)21x_2 = -(a-3) + \sqrt{(a-3)^2 - 1}. F(x1)=2x1+2(a3)=2(a3)21<0F''(x_1) = 2x_1 + 2(a-3) = -2\sqrt{(a-3)^2 - 1} < 0 (local maximum). F(x2)=2x2+2(a3)=2(a3)21>0F''(x_2) = 2x_2 + 2(a-3) = 2\sqrt{(a-3)^2 - 1} > 0 (local minimum). So, the point of local minimum is α=x2=(a3)+(a3)21\alpha = x_2 = -(a-3) + \sqrt{(a-3)^2 - 1}.

  4. Apply condition α<0\alpha < 0: (a3)+(a3)21<0-(a-3) + \sqrt{(a-3)^2 - 1} < 0 (a3)21<(a3)\sqrt{(a-3)^2 - 1} < (a-3) Let k=a3k = a-3. Then k21<k\sqrt{k^2 - 1} < k. For this to hold, we need k210k^2 - 1 \ge 0 and k>0k > 0. k21    k1k^2 \ge 1 \implies k \ge 1 or k1k \le -1. Combined with k>0k > 0, we get k1k \ge 1. Substituting back k=a3k = a-3, we have a31    a4a-3 \ge 1 \implies a \ge 4.

  5. Combine conditions on aa: For a local minimum to exist: a>4a > 4 or a<2a < 2. For the local minimum to be at α<0\alpha < 0: a4a \ge 4. The intersection is a>4a > 4. (Note: a=4a=4 leads to D=0D=0, an inflection point, not a local minimum, so a>4a>4 is strict).

  6. Count integral values: We need to count integers aa in [1,100][1, 100] such that a>4a > 4. These are 5,6,,1005, 6, \dots, 100. The number of values is 1005+1=96100 - 5 + 1 = 96.