Question
Question: Let $F(x)$ be a cubic polynomial defined by $F(x) = \frac{x^3}{3} + (a-3)x^2 + x - 13$, then the num...
Let F(x) be a cubic polynomial defined by F(x)=3x3+(a−3)x2+x−13, then the number of all possible integral values of a in the interval [1,100] for which F(x) has point of local minimum at (α,β), where α<0, is equal to

96
Solution
-
Find derivatives: F′(x)=x2+2(a−3)x+1 F′′(x)=2x+2(a−3)
-
Find critical points: Set F′(x)=0⟹x2+2(a−3)x+1=0. The roots are x=−(a−3)±(a−3)2−1. For distinct real roots (required for local extrema), the discriminant must be positive: (a−3)2−1>0⟹∣a−3∣>1, so a>4 or a<2.
-
Identify local minimum: Using the second derivative test, a local minimum occurs where F′′(x)>0. The roots are x1=−(a−3)−(a−3)2−1 and x2=−(a−3)+(a−3)2−1. F′′(x1)=2x1+2(a−3)=−2(a−3)2−1<0 (local maximum). F′′(x2)=2x2+2(a−3)=2(a−3)2−1>0 (local minimum). So, the point of local minimum is α=x2=−(a−3)+(a−3)2−1.
-
Apply condition α<0: −(a−3)+(a−3)2−1<0 (a−3)2−1<(a−3) Let k=a−3. Then k2−1<k. For this to hold, we need k2−1≥0 and k>0. k2≥1⟹k≥1 or k≤−1. Combined with k>0, we get k≥1. Substituting back k=a−3, we have a−3≥1⟹a≥4.
-
Combine conditions on a: For a local minimum to exist: a>4 or a<2. For the local minimum to be at α<0: a≥4. The intersection is a>4. (Note: a=4 leads to D=0, an inflection point, not a local minimum, so a>4 is strict).
-
Count integral values: We need to count integers a in [1,100] such that a>4. These are 5,6,…,100. The number of values is 100−5+1=96.
