Solveeit Logo

Question

Question: Let f(x) = ax<sup>2</sup> + bx + c, where a∈R<sup>+</sup> and b<sup>2</sup> – 4ac < 0. Area bounded ...

Let f(x) = ax2 + bx + c, where a∈R+ and b2 – 4ac < 0. Area bounded by y = f(x), x-axis and the lines x = 0, x = 1 is equal to

A

(3f(1) + f(-1) + 2f(0))

B

(5f(1) + f(-1) + 8f(0))

C

(3f(1) – f(-1) + 2f(0))

D

rac112 rac { 1 } { 12 } (5f(1) – f(-1) + 8f(0)

Answer

rac { 1 } { 12 } (5f(1) – f(-1) + 8f(0)

Explanation

Solution

Clearly f(x) > 0 V x ∈ R. Thus, required area,

Δ=01(ax2+bx+c)dx=a3+b2+c\Delta = \int _ { 0 } ^ { 1 } \left( a x ^ { 2 } + b x + c \right) d x = \frac { a } { 3 } + \frac { b } { 2 } + c

= 16\frac { 1 } { 6 } (2a + 3b + 6c)

Now, f(0) = c, f(1) = a + b + c, f(-1) =a - b + c

⇒ a = 12\frac { 1 } { 2 }(f(1) + f(−1) − 2f(0)), b = 12\frac { 1 } { 2 } (f(1) − f(-1)

Thus ∆ = 112\frac { 1 } { 12 } (5f(1) − f(-1) + 8f(0))