Question
Question: Let f(x) = ax<sup>2</sup> + bx + c, where a∈R<sup>+</sup> and b<sup>2</sup> – 4ac < 0. Area bounded ...
Let f(x) = ax2 + bx + c, where a∈R+ and b2 – 4ac < 0. Area bounded by y = f(x), x-axis and the lines x = 0, x = 1 is equal to
A
(3f(1) + f(-1) + 2f(0))
B
(5f(1) + f(-1) + 8f(0))
C
(3f(1) – f(-1) + 2f(0))
D
rac112 (5f(1) – f(-1) + 8f(0)
Answer
rac { 1 } { 12 } (5f(1) – f(-1) + 8f(0)
Explanation
Solution
Clearly f(x) > 0 V x ∈ R. Thus, required area,
Δ=∫01(ax2+bx+c)dx=3a+2b+c
= 61 (2a + 3b + 6c)
Now, f(0) = c, f(1) = a + b + c, f(-1) =a - b + c
⇒ a = 21(f(1) + f(−1) − 2f(0)), b = 21 (f(1) − f(-1)
Thus ∆ = 121 (5f(1) − f(-1) + 8f(0))