Solveeit Logo

Question

Question: Let f(x) = a^x (a > 0) be written as f(x) = f₁(x) + f₂(x), where f₁(x) is an even function and f₂(x)...

Let f(x) = a^x (a > 0) be written as f(x) = f₁(x) + f₂(x), where f₁(x) is an even function and f₂(x) is an odd function. Then f₁(x + y) + f₁(x - y) equals :

A

2f₁(x + y) f₂(x - y)

B

2f₂(x)f(y)

C

2f₁(x + y) f₁(x - y)

D

2f₁(x)f₁(y)

Answer

2f₁(x)f₁(y)

Explanation

Solution

Given f(x)=axf(x) = a^x for a>0a > 0. We can decompose f(x)f(x) into even and odd parts as f(x)=f1(x)+f2(x)f(x) = f_1(x) + f_2(x), where f1(x)f_1(x) is even and f2(x)f_2(x) is odd.

The even part of f(x)f(x) is given by f1(x)=f(x)+f(x)2f_1(x) = \frac{f(x) + f(-x)}{2}. The odd part is f2(x)=f(x)f(x)2f_2(x) = \frac{f(x) - f(-x)}{2}.

For f(x)=axf(x) = a^x, we have f(x)=axf(-x) = a^{-x}. Thus, f1(x)=ax+ax2f_1(x) = \frac{a^x + a^{-x}}{2} and f2(x)=axax2f_2(x) = \frac{a^x - a^{-x}}{2}.

We want to find f1(x+y)+f1(xy)f_1(x + y) + f_1(x - y). We have f1(x+y)=ax+y+a(x+y)2=ax+y+axy2f_1(x+y) = \frac{a^{x+y} + a^{-(x+y)}}{2} = \frac{a^{x+y} + a^{-x-y}}{2} f1(xy)=axy+a(xy)2=axy+ax+y2f_1(x-y) = \frac{a^{x-y} + a^{-(x-y)}}{2} = \frac{a^{x-y} + a^{-x+y}}{2}

Adding these two expressions: f1(x+y)+f1(xy)=ax+y+axy2+axy+ax+y2=ax+y+axy+axy+ax+y2f_1(x+y) + f_1(x-y) = \frac{a^{x+y} + a^{-x-y}}{2} + \frac{a^{x-y} + a^{-x+y}}{2} = \frac{a^{x+y} + a^{-x-y} + a^{x-y} + a^{-x+y}}{2}

Using properties of exponents: =axay+axay+axay+axay2=ax(ay+ay)+ax(ay+ay)2= \frac{a^x a^y + a^{-x} a^{-y} + a^x a^{-y} + a^{-x} a^y}{2} = \frac{a^x (a^y + a^{-y}) + a^{-x} (a^y + a^{-y})}{2} =(ax+ax)(ay+ay)2= \frac{(a^x + a^{-x})(a^y + a^{-y})}{2}

Since f1(x)=ax+ax2f_1(x) = \frac{a^x + a^{-x}}{2} and f1(y)=ay+ay2f_1(y) = \frac{a^y + a^{-y}}{2}, we have ax+ax=2f1(x)a^x + a^{-x} = 2 f_1(x) and ay+ay=2f1(y)a^y + a^{-y} = 2 f_1(y).

Substituting these into the expression: f1(x+y)+f1(xy)=(2f1(x))(2f1(y))2=4f1(x)f1(y)2=2f1(x)f1(y)f_1(x+y) + f_1(x-y) = \frac{(2 f_1(x))(2 f_1(y))}{2} = \frac{4 f_1(x) f_1(y)}{2} = 2 f_1(x) f_1(y).

Therefore, f1(x+y)+f1(xy)=2f1(x)f1(y)f_1(x + y) + f_1(x - y) = 2f_1(x)f_1(y).