Solveeit Logo

Question

Question: Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) ...

Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x - y) equals : [JEE(Main)-2019]

A

2f1(x + y) f2(x - y)

B

2f2(x)f1(y)

C

2f1(x + y) f1(x - y)

D

2f1(x)f2(y)

Answer

2f2(x)f1(y)

Explanation

Solution

Let f(x)=axf(x) = a^x for a>0a > 0.

We are given that f(x)=f1(x)+f2(x)f(x) = f_1(x) + f_2(x), where f1(x)f_1(x) is an even function and f2(x)f_2(x) is an odd function.

The even part of f(x)f(x) is f1(x)=f(x)+f(x)2f_1(x) = \frac{f(x) + f(-x)}{2}.

The odd part of f(x)f(x) is f2(x)=f(x)f(x)2f_2(x) = \frac{f(x) - f(-x)}{2}.

For f(x)=axf(x) = a^x, we have f(x)=axf(-x) = a^{-x}.

So, f1(x)=ax+ax2f_1(x) = \frac{a^x + a^{-x}}{2} and f2(x)=axax2f_2(x) = \frac{a^x - a^{-x}}{2}.

The question asks for f1(x+y)+f1(xy)f_1(x+y) + f_1(x-y). However, the options do not match the correct result for this expression. It is highly probable that there is a typo in the question, and it was intended to ask for f2(x+y)+f2(xy)f_2(x+y) + f_2(x-y).

Assuming the question intended to ask for f2(x+y)+f2(xy)f_2(x+y) + f_2(x-y):

f2(x+y)=ax+ya(x+y)2=ax+yaxy2f_2(x+y) = \frac{a^{x+y} - a^{-(x+y)}}{2} = \frac{a^{x+y} - a^{-x-y}}{2}.

f2(xy)=axya(xy)2=axyax+y2f_2(x-y) = \frac{a^{x-y} - a^{-(x-y)}}{2} = \frac{a^{x-y} - a^{-x+y}}{2}.

f2(x+y)+f2(xy)=ax+yaxy+axyax+y2f_2(x+y) + f_2(x-y) = \frac{a^{x+y} - a^{-x-y} + a^{x-y} - a^{-x+y}}{2}

=(axayaxay)+(axayaxay)2= \frac{(a^x a^y - a^{-x} a^y) + (a^x a^{-y} - a^{-x} a^{-y})}{2}

=ay(axax)+ay(axax)2= \frac{a^y(a^x - a^{-x}) + a^{-y}(a^x - a^{-x})}{2}

=(ay+ay)(axax)2= \frac{(a^y + a^{-y})(a^x - a^{-x})}{2}

=(ay+ay2)(axax)= \left(\frac{a^y + a^{-y}}{2}\right) (a^x - a^{-x})

=f1(y)(2f2(x))= f_1(y) (2f_2(x))

=2f2(x)f1(y)= 2f_2(x)f_1(y).

This matches option (2).