Solveeit Logo

Question

Question: Let $f(x) = a_1 \sin x + a_2 \sin 2x + ... + a_n \sin nx$, where $a_1 \in R$ and $n \in N$. If $|f(x...

Let f(x)=a1sinx+a2sin2x+...+ansinnxf(x) = a_1 \sin x + a_2 \sin 2x + ... + a_n \sin nx, where a1Ra_1 \in R and nNn \in N. If f(x)sinxx|f(x)| \leq |\sin x|\forall x, then the maximum value of a1+2a2+...+nan|a_1 + 2a_2 + ... + na_n| is

A

-1

B

0

C

1

D

2

Answer

1

Explanation

Solution

Let f(x)=a1sinx+a2sin2x+...+ansinnxf(x) = a_1 \sin x + a_2 \sin 2x + ... + a_n \sin nx. We are given that f(x)sinx|f(x)| \leq |\sin x| for all xRx \in R.

We are interested in the value of S=a1+2a2+...+nanS = a_1 + 2a_2 + ... + na_n. Let's consider the limit of f(x)sinx\frac{f(x)}{\sin x} as x0x \to 0. f(x)sinx=a1sinx+a2sin2x+...+ansinnxsinx=a1sinxsinx+a2sin2xsinx+...+ansinnxsinx\frac{f(x)}{\sin x} = \frac{a_1 \sin x + a_2 \sin 2x + ... + a_n \sin nx}{\sin x} = a_1 \frac{\sin x}{\sin x} + a_2 \frac{\sin 2x}{\sin x} + ... + a_n \frac{\sin nx}{\sin x}. As x0x \to 0, sinkxsinxk\frac{\sin kx}{\sin x} \to k. So, limx0f(x)sinx=a1(1)+a2(2)+...+an(n)=a1+2a2+...+nan=S\lim_{x \to 0} \frac{f(x)}{\sin x} = a_1(1) + a_2(2) + ... + a_n(n) = a_1 + 2a_2 + ... + na_n = S.

We are given f(x)sinx|f(x)| \leq |\sin x|. For xkπx \neq k\pi (where kk is an integer), sinx0\sin x \neq 0. We can divide by sinx|\sin x|: f(x)sinx1\left|\frac{f(x)}{\sin x}\right| \leq 1. This inequality holds for all xx where sinx0\sin x \neq 0. In particular, it holds for xx in a neighborhood of 0, excluding 0 itself.

By the property of limits, if g(x)Mg(x) \leq M for all xx in a neighborhood of cc (excluding cc), and limxcg(x)=L\lim_{x \to c} g(x) = L, then LML \leq M. Similarly, if g(x)mg(x) \geq m, then LmL \geq m. In our case, let g(x)=f(x)sinxg(x) = \frac{f(x)}{\sin x} and c=0c=0. We have 1f(x)sinx1-1 \leq \frac{f(x)}{\sin x} \leq 1 for xx near 0 (but x0x \neq 0). Taking the limit as x0x \to 0: limx0(1)limx0f(x)sinxlimx01\lim_{x \to 0} (-1) \leq \lim_{x \to 0} \frac{f(x)}{\sin x} \leq \lim_{x \to 0} 1. 1S1-1 \leq S \leq 1.

This implies S1|S| \leq 1. So, a1+2a2+...+nan1|a_1 + 2a_2 + ... + na_n| \leq 1. The maximum value of a1+2a2+...+nan|a_1 + 2a_2 + ... + na_n| is at most 1.

To show that 1 is achievable, we need to find coefficients a1,...,ana_1, ..., a_n such that f(x)sinx|f(x)| \leq |\sin x| for all xx and a1+2a2+...+nan=1a_1 + 2a_2 + ... + na_n = 1 or a1+2a2+...+nan=1a_1 + 2a_2 + ... + na_n = -1. Consider the choice a1=1a_1 = 1 and a2=a3=...=an=0a_2 = a_3 = ... = a_n = 0. In this case, f(x)=1sinx+0sin2x+...+0sinnx=sinxf(x) = 1 \cdot \sin x + 0 \cdot \sin 2x + ... + 0 \cdot \sin nx = \sin x. The condition f(x)sinx|f(x)| \leq |\sin x| becomes sinxsinx|\sin x| \leq |\sin x|, which is true for all xx. The sum a1+2a2+...+nana_1 + 2a_2 + ... + na_n is 1+2(0)+...+n(0)=11 + 2(0) + ... + n(0) = 1. The value of a1+2a2+...+nan|a_1 + 2a_2 + ... + na_n| is 1=1|1| = 1.

Since we have shown that the value is at most 1 and that 1 is achievable, the maximum value of a1+2a2+...+nan|a_1 + 2a_2 + ... + na_n| is 1.