Question
Question: Let f(x) = a sec x – b tanx, a \> b \> 0. Minimum value of f(x) Is...
Let f(x) = a sec x – b tanx, a > b > 0. Minimum value of f(x)
Is
A
a2+ b2
B
(a2− b2)
C
a2+b2
D
a2−b2
Answer
a2−b2
Explanation
Solution
f(x) = cosxa−bsinx
⇒ f(x) = cos2xasinx−bf '(x) = 0
= x = sin−1(ab) or x = π−sin−1(ab)
Sign scheme of f'(x) is

Clearly x = sin−1(ab) is the point of minima for
y = f(x). When x = sin−1(ab), secx = a2−b2a
tan x = a2−b2b ⇒ f(x) = a2−b2