Solveeit Logo

Question

Question: Let $f(x) = 6x^{4/3} - 3x^{1/3}, x \in [-1, 1]$. Then...

Let f(x)=6x4/33x1/3,x[1,1]f(x) = 6x^{4/3} - 3x^{1/3}, x \in [-1, 1]. Then

A

The maximum value of f(x)f(x) on [1,1][-1, 1] is 3

B

The maximum value of f(x)f(x) on [1,1][-1, 1] is 9

C

The minimum value of f(x)f(x) on [1,1][-1, 1] is 0

D

none of these

Answer

The maximum value of f(x) on [-1, 1] is 9

Explanation

Solution

To find the maximum and minimum values of the function f(x)=6x4/33x1/3f(x) = 6x^{4/3} - 3x^{1/3} on the interval [1,1][-1, 1], we find the critical points by taking the derivative and setting it to zero.

f(x)=8x1/3x2/3=8x1x2/3f'(x) = 8x^{1/3} - x^{-2/3} = \frac{8x - 1}{x^{2/3}}

Critical points occur when f(x)=0f'(x) = 0 or is undefined. Thus, x=18x = \frac{1}{8} and x=0x = 0 are critical points. We also evaluate the function at the endpoints x=1x = -1 and x=1x = 1.

f(1)=6(1)4/33(1)1/3=6(1)3(1)=9f(-1) = 6(-1)^{4/3} - 3(-1)^{1/3} = 6(1) - 3(-1) = 9

f(0)=6(0)4/33(0)1/3=0f(0) = 6(0)^{4/3} - 3(0)^{1/3} = 0

f(18)=6(18)4/33(18)1/3=6(116)3(12)=38128=98f\left(\frac{1}{8}\right) = 6\left(\frac{1}{8}\right)^{4/3} - 3\left(\frac{1}{8}\right)^{1/3} = 6\left(\frac{1}{16}\right) - 3\left(\frac{1}{2}\right) = \frac{3}{8} - \frac{12}{8} = -\frac{9}{8}

f(1)=6(1)4/33(1)1/3=63=3f(1) = 6(1)^{4/3} - 3(1)^{1/3} = 6 - 3 = 3

Comparing the values 9,0,98,39, 0, -\frac{9}{8}, 3, the maximum value is 99 and the minimum value is 98-\frac{9}{8}.