Solveeit Logo

Question

Question: Let f(x) = 4x + 8 cosx - ln(cosx(1 + sinx)) + tanx − 2secx − 6. If f(x) \> 0 ∀ x ∈ (0, a) then...

Let f(x) = 4x + 8 cosx - ln(cosx(1 + sinx)) + tanx − 2secx − 6.

If f(x) > 0 ∀ x ∈ (0, a) then

A

a = π6\frac { \pi } { 6 }

B

a = π3\frac { \pi } { 3 }

C

a = π2\frac { \pi } { 2 }

D

) None of these

Answer

a = π6\frac { \pi } { 6 }

Explanation

Solution

f'(x) = 4 − 8 sinx −4(sinx+cos2xsin2x)cosx(1+sinx)\frac { 4 \left( - \sin x + \cos ^ { 2 } x - \sin ^ { 2 } x \right) } { \cos x ( 1 + \sin x ) } +

sec2x - secx. tanx

= 4 (1 − 2 sinx) + sec2x (1 – 2 sinx) − 4 secx(1 - 2 sinx)

⇒ (secx − 2)2 (1 − 2 sinx)

f(0 + 0) = 0. If f(x) > 0 ∀ x ∈ (0, a) then f(x) must be increasing in (0, a)

⇒ f '(x) > 0 ∀ x ∈ (0, a)