Question
Question: Let f(x) = 4x + 8 cosx - ln(cosx(1 + sinx)) + tanx − 2secx − 6. If f(x) \> 0 ∀ x ∈ (0, a) then...
Let f(x) = 4x + 8 cosx - ln(cosx(1 + sinx)) + tanx − 2secx − 6.
If f(x) > 0 ∀ x ∈ (0, a) then
A
a = 6π
B
a = 3π
C
a = 2π
D
) None of these
Answer
a = 6π
Explanation
Solution
f'(x) = 4 − 8 sinx −cosx(1+sinx)4(−sinx+cos2x−sin2x) +
sec2x - secx. tanx
= 4 (1 − 2 sinx) + sec2x (1 – 2 sinx) − 4 secx(1 - 2 sinx)
⇒ (secx − 2)2 (1 − 2 sinx)
f(0 + 0) = 0. If f(x) > 0 ∀ x ∈ (0, a) then f(x) must be increasing in (0, a)
⇒ f '(x) > 0 ∀ x ∈ (0, a)
⇒