Question
Question: Let \(f(x) = 4\) and \(f'(x) = 4\), then \(\lim_{x \rightarrow 2}\frac{xf(2) - 2f(x)}{x - 2}\) equal...
Let f(x)=4 and f′(x)=4, then limx→2x−2xf(2)−2f(x) equals
A
2
B
– 2
C
– 4
D
3
Answer
– 4
Explanation
Solution
y=limx→2x−2xf(2)−2f(x)
⇒ y=limx→2x−2xf(2)−2f(2)+2f(2)−2f(x)
⇒ y=limx→2(x−2)−2f(x)+2f(2)+xf(2)−2f(2)
⇒ y=limx→2−2x−2[f(x)−f(2)]+limx→2(x−2)f(2).(x−2)
⇒ y=−2limx→2x−2f(x)−f(2)+f(2)
⇒y=−2limx→2f′(x)+f(2)=−8+4=−4.