Solveeit Logo

Question

Question: Let \(f(x) = 4\) and \(f'(x) = 4\), then \(\lim_{x \rightarrow 2}\frac{xf(2) - 2f(x)}{x - 2}\) equal...

Let f(x)=4f(x) = 4 and f(x)=4f'(x) = 4, then limx2xf(2)2f(x)x2\lim_{x \rightarrow 2}\frac{xf(2) - 2f(x)}{x - 2} equals

A

2

B

– 2

C

– 4

D

3

Answer

– 4

Explanation

Solution

y=limx2xf(2)2f(x)x2y = \lim_{x \rightarrow 2}\frac{xf(2) - 2f(x)}{x - 2}

y=limx2xf(2)2f(2)+2f(2)2f(x)x2y = \lim_{x \rightarrow 2}\frac{xf(2) - 2f(2) + 2f(2) - 2f(x)}{x - 2}

y=limx22f(x)+2f(2)+xf(2)2f(2)(x2)y = \lim_{x \rightarrow 2}\frac{- 2f(x) + 2f(2) + xf(2) - 2f(2)}{(x - 2)}

y=limx22[f(x)f(2)]x2+limx2f(2).(x2)(x2)y = \lim_{x \rightarrow 2} - 2\frac{\lbrack f(x) - f(2)\rbrack}{x - 2} + \lim_{x \rightarrow 2}\frac{f(2).(x - 2)}{(x - 2)}

y=2limx2f(x)f(2)x2+f(2)y = - 2\lim_{x \rightarrow 2}\frac{f(x) - f(2)}{x - 2} + f(2)

y=2limx2f(x)+f(2)=8+4=4y = - 2\lim_{x \rightarrow 2}f^{'}(x) + f(2) = - 8 + 4 = - 4.