Solveeit Logo

Question

Question: Let f(x) = 2x – tan<sup>−1</sup>x − ln(x+ \(\sqrt{1 + x^{2}}\)) ∀ x ∈ R. Then...

Let f(x) = 2x – tan−1x − ln(x+ 1+x2\sqrt{1 + x^{2}}) ∀ x ∈ R. Then

A

f(x) in non-increasing in (-∞, ∞)

B

f(x) in non-decreasing in (-∞, ∞)

C

f(x) is increasing in (-∞, ∞)

D

f(x) is decreasing in (-∞, ∞)

Answer

f(x) is increasing in (-∞, ∞)

Explanation

Solution

f'(x) =

⇒ f '(x) = x(2+1+x2)(1+x2)2\frac { x \left( 2 + \sqrt { 1 + x ^ { 2 } } \right) } { \left( 1 + x ^ { 2 } \right) ^ { 2 } }

clearly f"(x) < 0 ∀ x ∈ R and f ''(x) > 0 ∀ x > 0.

f '(0) = 0 ⇒ f '(x) ∀ x > 0 and f '(x) > 0 ∀ x < 0.

Thus f(x) is increasing for ∀ x ∈ R .