Solveeit Logo

Question

Question: Let $f(x) = (1 + x)\ln(1 + x) - x - \frac{x^2}{4}$, $\forall x > -1$ and $f'(x) > 0$ $\forall x \in ...

Let f(x)=(1+x)ln(1+x)xx24f(x) = (1 + x)\ln(1 + x) - x - \frac{x^2}{4}, x>1\forall x > -1 and f(x)>0f'(x) > 0 x(0,α)\forall x \in (0, \alpha), then maximum value of [α][\alpha] is (where [][\,] denotes greatest integer function)

Answer

2

Explanation

Solution

The problem asks us to find the maximum value of [α][\alpha] such that f(x)>0f'(x) > 0 for all x(0,α)x \in (0, \alpha), where f(x)=(1+x)ln(1+x)xx24f(x) = (1 + x)\ln(1 + x) - x - \frac{x^2}{4}.

First, we need to find the derivative of f(x)f(x), denoted as f(x)f'(x). The function is f(x)=(1+x)ln(1+x)xx24f(x) = (1 + x)\ln(1 + x) - x - \frac{x^2}{4}. Using the product rule for the first term and power rule for the others: ddx((1+x)ln(1+x))=ddx(1+x)ln(1+x)+(1+x)ddx(ln(1+x))\frac{d}{dx}((1 + x)\ln(1 + x)) = \frac{d}{dx}(1 + x) \cdot \ln(1 + x) + (1 + x) \cdot \frac{d}{dx}(\ln(1 + x)) =1ln(1+x)+(1+x)11+x= 1 \cdot \ln(1 + x) + (1 + x) \cdot \frac{1}{1 + x} =ln(1+x)+1= \ln(1 + x) + 1

Now, differentiating the rest of the terms: ddx(x)=1\frac{d}{dx}(-x) = -1 ddx(x24)=2x4=x2\frac{d}{dx}(-\frac{x^2}{4}) = -\frac{2x}{4} = -\frac{x}{2}

Combining these, we get f(x)f'(x): f(x)=(ln(1+x)+1)1x2f'(x) = (\ln(1 + x) + 1) - 1 - \frac{x}{2} f(x)=ln(1+x)x2f'(x) = \ln(1 + x) - \frac{x}{2}

We are given that f(x)>0f'(x) > 0 for all x(0,α)x \in (0, \alpha). This means we need to find the values of xx for which ln(1+x)x2>0\ln(1 + x) - \frac{x}{2} > 0. Let's define a new function g(x)=ln(1+x)x2g(x) = \ln(1 + x) - \frac{x}{2}. We need to find the interval (0,α)(0, \alpha) where g(x)>0g(x) > 0.

First, let's evaluate g(x)g(x) at x=0x=0: g(0)=ln(1+0)02=ln(1)0=00=0g(0) = \ln(1 + 0) - \frac{0}{2} = \ln(1) - 0 = 0 - 0 = 0.

Next, let's find the derivative of g(x)g(x), g(x)g'(x), to analyze its behavior: g(x)=ddx(ln(1+x))ddx(x2)g'(x) = \frac{d}{dx}(\ln(1 + x)) - \frac{d}{dx}(\frac{x}{2}) g(x)=11+x12g'(x) = \frac{1}{1 + x} - \frac{1}{2}

To find critical points, set g(x)=0g'(x) = 0: 11+x12=0\frac{1}{1 + x} - \frac{1}{2} = 0 11+x=12\frac{1}{1 + x} = \frac{1}{2} 1+x=21 + x = 2 x=1x = 1

Now, let's analyze the sign of g(x)g'(x):

  • For x(1,1)x \in (-1, 1) (considering the domain x>1x > -1), if x<1x < 1, then 1+x<21+x < 2, so 11+x>12\frac{1}{1+x} > \frac{1}{2}. This means g(x)=11+x12>0g'(x) = \frac{1}{1+x} - \frac{1}{2} > 0. Thus, g(x)g(x) is increasing on the interval (1,1)(-1, 1).
  • For x(1,)x \in (1, \infty), if x>1x > 1, then 1+x>21+x > 2, so 11+x<12\frac{1}{1+x} < \frac{1}{2}. This means g(x)=11+x12<0g'(x) = \frac{1}{1+x} - \frac{1}{2} < 0. Thus, g(x)g(x) is decreasing on the interval (1,)(1, \infty).

Since g(0)=0g(0) = 0 and g(x)g(x) is increasing for x(0,1)x \in (0, 1), g(x)g(x) will be positive for x(0,1]x \in (0, 1]. Let's check the value of g(1)g(1): g(1)=ln(1+1)12=ln(2)12g(1) = \ln(1 + 1) - \frac{1}{2} = \ln(2) - \frac{1}{2}. Since ln(2)0.693\ln(2) \approx 0.693 and 1/2=0.51/2 = 0.5, g(1)0.6930.5=0.193>0g(1) \approx 0.693 - 0.5 = 0.193 > 0.

Since g(1)>0g(1) > 0 and g(x)g(x) is decreasing for x>1x > 1, there must be a value x0>1x_0 > 1 where g(x0)=0g(x_0) = 0. Let's test integer values for xx greater than 1:

  • For x=2x=2: g(2)=ln(1+2)22=ln(3)1g(2) = \ln(1 + 2) - \frac{2}{2} = \ln(3) - 1. Since e2.718e \approx 2.718, e1<3e^1 < 3, so ln(3)>1\ln(3) > 1. Thus, g(2)=ln(3)1>0g(2) = \ln(3) - 1 > 0. (Approximate value: 1.09861=0.09861.0986 - 1 = 0.0986)
  • For x=3x=3: g(3)=ln(1+3)32=ln(4)1.5g(3) = \ln(1 + 3) - \frac{3}{2} = \ln(4) - 1.5. Since e1.5=ee2.718×1.6484.47>4e^{1.5} = e\sqrt{e} \approx 2.718 \times 1.648 \approx 4.47 > 4, so ln(4)<1.5\ln(4) < 1.5. Thus, g(3)=ln(4)1.5<0g(3) = \ln(4) - 1.5 < 0. (Approximate value: 1.3861.5=0.1141.386 - 1.5 = -0.114)

Since g(2)>0g(2) > 0 and g(3)<0g(3) < 0, the root x0x_0 of g(x)=0g(x) = 0 must lie between 2 and 3. So, 2<x0<32 < x_0 < 3.

From the analysis, g(x)>0g(x) > 0 for x(0,x0)x \in (0, x_0). The problem states that f(x)>0f'(x) > 0 for all x(0,α)x \in (0, \alpha). This means α\alpha is the largest value such that f(x)f'(x) remains positive throughout the interval (0,α)(0, \alpha). Therefore, α=x0\alpha = x_0.

Since 2<x0<32 < x_0 < 3, we have 2<α<32 < \alpha < 3. We need to find the maximum value of [α][\alpha], where [][\,] denotes the greatest integer function. For any value of α\alpha such that 2<α<32 < \alpha < 3, the greatest integer less than or equal to α\alpha is [α]=2[\alpha] = 2. Therefore, the maximum value of [α][\alpha] is 2.

The final answer is 2\boxed{2}.

Explanation of the solution:

  1. Calculate f(x)f'(x): Differentiate f(x)=(1+x)ln(1+x)xx24f(x) = (1 + x)\ln(1 + x) - x - \frac{x^2}{4} to get f(x)=ln(1+x)x2f'(x) = \ln(1 + x) - \frac{x}{2}.
  2. Analyze f(x)>0f'(x) > 0: Set g(x)=f(x)=ln(1+x)x2g(x) = f'(x) = \ln(1 + x) - \frac{x}{2}. We need to find the interval (0,α)(0, \alpha) where g(x)>0g(x) > 0.
  3. Evaluate g(0)g(0): g(0)=ln(1)0=0g(0) = \ln(1) - 0 = 0.
  4. Analyze g(x)g'(x): Calculate g(x)=11+x12g'(x) = \frac{1}{1 + x} - \frac{1}{2}.
    • Set g(x)=0g'(x) = 0 to find critical points: 11+x=12    1+x=2    x=1\frac{1}{1 + x} = \frac{1}{2} \implies 1 + x = 2 \implies x = 1.
    • For x(0,1)x \in (0, 1), g(x)>0g'(x) > 0, so g(x)g(x) is increasing.
    • For x(1,)x \in (1, \infty), g(x)<0g'(x) < 0, so g(x)g(x) is decreasing.
  5. Find the root x0x_0: Since g(0)=0g(0) = 0, and g(x)g(x) increases for x(0,1)x \in (0,1), then decreases for x>1x > 1, there must be another root x0>1x_0 > 1.
    • g(1)=ln(2)0.50.193>0g(1) = \ln(2) - 0.5 \approx 0.193 > 0.
    • g(2)=ln(3)10.0986>0g(2) = \ln(3) - 1 \approx 0.0986 > 0.
    • g(3)=ln(4)1.50.114<0g(3) = \ln(4) - 1.5 \approx -0.114 < 0.
    • Since g(2)>0g(2) > 0 and g(3)<0g(3) < 0, the root x0x_0 lies between 2 and 3, i.e., 2<x0<32 < x_0 < 3.
  6. Determine α\alpha: g(x)>0g(x) > 0 for x(0,x0)x \in (0, x_0). The problem states f(x)>0f'(x) > 0 for all x(0,α)x \in (0, \alpha), so α=x0\alpha = x_0.
  7. Calculate [α][\alpha]: Since 2<α<32 < \alpha < 3, the greatest integer less than or equal to α\alpha is [α]=2[\alpha] = 2.

The maximum value of [α][\alpha] is 2.