Question
Question: Let f(x) = (1 + b<sup>2</sup>) x<sup>2</sup> + 2bx + 1 and let m(2) be the minimum value of f(x). As...
Let f(x) = (1 + b2) x2 + 2bx + 1 and let m(2) be the minimum value of f(x). As b varies, the range of m(2) is-
A
[0, 1]
B
[0,21]
C
[21,1]
D
(0, 1]
Answer
(0, 1]
Explanation
Solution
f(x) = (1 + b2) x2 + 2bx + 1
min.of f(x) = m(2) =4a−D = 4(1+b2)−4[b2−(1+b2)]
m(2) = 1+b21
m¢(2) = – ((1+b2)22b)= 0
b = 0 is critical point, 0<m(b)≤1