Solveeit Logo

Question

Question: Let f(x) = (1 + b<sup>2</sup>) x<sup>2</sup> + 2bx + 1 and let m(2) be the minimum value of f(x). As...

Let f(x) = (1 + b2) x2 + 2bx + 1 and let m(2) be the minimum value of f(x). As b varies, the range of m(2) is-

A

[0, 1]

B

[0,12]\left\lbrack 0,\frac{1}{2} \right\rbrack

C

[12,1]\left\lbrack \frac{1}{2},1 \right\rbrack

D

(0, 1]

Answer

(0, 1]

Explanation

Solution

f(x) = (1 + b2) x2 + 2bx + 1

min.of f(x) = m(2) =D4a\frac{- D}{4a} = 4[b2(1+b2)]4(1+b2)\frac{- 4\left\lbrack b^{2} - (1 + b^{2}) \right\rbrack}{4(1 + b^{2})}

m(2) = 11+b2\frac{1}{1 + b^{2}}

m¢(2) = – (2b(1+b2)2)\left( \frac{2b}{(1 + b^{2})^{2}} \right)= 0

b = 0 is critical point, 0<m(b)1\begin{matrix} \begin{matrix} 0 < m(b) \leq 1 \end{matrix} \end{matrix}