Solveeit Logo

Question

Mathematics Question on Application of derivatives

Let function f(x)=(x1)2(x+1)3.f(x)={{(x-1)}^{2}}{{(x+1)}^{3}}. Then, which of the following is false?

A

There exists a point where f(x)f(x) has a maximum value

B

There exists a point where f(x)f(x) has a minimum value

C

There exists a point where f(x)f(x) has neither maximum nor minimum value

D

All of the above

Answer

All of the above

Explanation

Solution

Given, f(x)=(x1)2(x+1)3f(x)={{(x-1)}^{2}}{{(x+1)}^{3}} f(x)=(x1)23(x+1)2+2(x1)(x+1)3f'(x)={{(x-1)}^{2}}3{{(x+1)}^{2}}+2(x-1){{(x+1)}^{3}}
=(x1)(x+1)2[3(x1)+2(x+1)]=(x-1){{(x+1)}^{2}}[3(x-1)+2(x+1)]
=(x1)(x+1)2[3x3+2x+2]=(x-1){{(x+1)}^{2}}[3x-3+2x+2]
\Rightarrow f(x)=(x1)(x+1)2(5x1)f'(x)=(x-1)\,{{(x+1)}^{2}}\,(5x-1) ..(i)
For maxima or minima, f(x)=0f'(x)=0
\Rightarrow (x1)(x+1)2(5x1)=0(x-1){{(x+1)}^{2}}(5x-1)=0
\Rightarrow x=1,1,15x=-1,\,\,\,1,\frac{1}{5}
Again, differentiating E (i) . r. t, x. we get f(x)=(x1)(5x1)ddx(x+1)2f''(x)=(x-1)(5x-1)\frac{d}{dx}{{(x+1)}^{2}} +(x+1)2ddx(x1)(5x1)+{{(x+1)}^{2}}\frac{d}{dx}(x-1)(5x-1)
=(5x26x+1)2(x+1)+(x+1)2(10x6)=(5{{x}^{2}}-6x+1)2(x+1)+{{(x+1)}^{2}}(10x-6)
=2[5x3x25x+1]+(5x3+7x2x3)(2)=2[5{{x}^{3}}-{{x}^{2}}-5x+1]+(5{{x}^{3}}+7{{x}^{2}}-x-3)\,(2)
\Rightarrow f(x)=2[10x3+6x26x2]f''(x)=2[10{{x}^{3}}+6{{x}^{2}}-6x-2] At x=1,f(x)=0x=-1,\,f''(x)=0
At x=15,f(x)<0x=\frac{1}{5},\,\,f''(x)<0 and at x=1,f(x)>0x=1,\,\,f''(x)>0
So, at x=1,x=-1,
f(x)f(x) has neither maximum not minimum value At x=15,f(x)x=\frac{1}{5},\,\,f(x) has maximum value
At x=1,f(x)x=1,\,\,\,f(x) has minimum value