Solveeit Logo

Question

Question: Let frequency ν = 50 Hz, and capacitance C = 100μF in an ac circuit containing a capacitor only. If ...

Let frequency ν = 50 Hz, and capacitance C = 100μF in an ac circuit containing a capacitor only. If the peak value of the current in the circuit is 1.57 A. The expression for the instantaneous voltage across the capacitor will be

A

E = 50 sin (100 πt – π2\frac{\pi}{2})

B

E = 100 sin (50 πt)

C

E = 50 sin (100 πt)

D

E = 50 sin (100 πt + π2\frac{\pi}{2})

Answer

E = 50 sin (100 πt – π2\frac{\pi}{2})

Explanation

Solution

Peak value of voltage V0=i0XC=i02πνCV_{0} = i_{0}X_{C} = \frac{i_{0}}{2\pi\nu C}

1.572×3.14×50×100×106=50V\frac{1.57}{2 \times 3.14 \times 50 \times 100 \times 10^{- 6}} = 50VHence if equation of current i=i0sinωti = i_{0}\sin\omega t then in capacitive circuit voltage is V=V0sin(ωtπ2)V = V_{0}\sin\left( \omega t - \frac{\pi}{2} \right)

V=50(sin2π×50tπ2)=50sin(100πtπ2)V = 50\left( \sin 2\pi \times 50t - \frac{\pi}{2} \right) = 50\sin\left( 100\pi t - \frac{\pi}{2} \right)