Solveeit Logo

Question

Question: Let $\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$, $\alpha > \beta$ be an ellipse, whose eccentri...

Let x2α2+y2β2=1\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1, α>β\alpha > \beta be an ellipse, whose eccentricity is 13\frac{1}{\sqrt{3}}. If eHe_H denotes the eccentricity of x2α2y2β2=1\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1, then eH2e_H^2 equals

A

113\frac{11}{3}

B

53\frac{5}{3}

C

127\frac{12}{7}

D

253\frac{25}{3}

Answer

53\frac{5}{3}

Explanation

Solution

Explanation:

  1. Eccentricity of the ellipse: For an ellipse x2α2+y2β2=1\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1 with α>β\alpha > \beta, the eccentricity ee is given by the relation e2=1β2α2e^2 = 1 - \frac{\beta^2}{\alpha^2}. Given e=13e = \frac{1}{\sqrt{3}}, we have e2=(13)2=13e^2 = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3}. So, 13=1β2α2\frac{1}{3} = 1 - \frac{\beta^2}{\alpha^2}. Rearranging this, we find β2α2=113=23\frac{\beta^2}{\alpha^2} = 1 - \frac{1}{3} = \frac{2}{3}.

  2. Eccentricity of the hyperbola: For a hyperbola x2α2y2β2=1\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1, the eccentricity eHe_H is given by the relation eH2=1+β2α2e_H^2 = 1 + \frac{\beta^2}{\alpha^2}.

  3. Calculate eH2e_H^2: Substitute the value of β2α2\frac{\beta^2}{\alpha^2} found from the ellipse's eccentricity into the hyperbola's eccentricity formula: eH2=1+23=33+23=53e_H^2 = 1 + \frac{2}{3} = \frac{3}{3} + \frac{2}{3} = \frac{5}{3}.

The value of eH2e_H^2 is 53\frac{5}{3}.