Solveeit Logo

Question

Question: Let \(\frac{f(x + y)}{2}\)= \(\frac{f(x) + f(y)}{2}\), f '(0) = a and f(0) = b then f " (x) =...

Let f(x+y)2\frac{f(x + y)}{2}= f(x)+f(y)2\frac{f(x) + f(y)}{2}, f '(0) = a and f(0) = b then f " (x) =

A

0

B

a

C

b

D

a+b

Answer

0

Explanation

Solution

Assume x → constant

y → variable

diff. equation

12f(x+y2)=12f(y)\frac{1}{2}f'\left( \frac{x + y}{2} \right) = \frac{1}{2}f'(y)

but y = 0 ; f '(x/2) = a

Integrate

f(x/2) = a(x/2) + C ⇒ f(x) = ax + c

put x = 0, f(0) = b ⇒ c = b

∴ f(x) = ax = b

f"(x) = 0 \end{matrix}$$